
A Validity Analysis to Reify 2-valued Boolean
Constraints
Edward D. Willink1

1Willink Transformations Ltd, Reading, England

Abstract
As an executable specification language, OCL enables metamodel constraints that cannot be sensibly
expressed graphically to be resolved textually. However many users have expressed disquiet that although
a constraint is obviously either satisfied or not, the OCL formulation is not 2-valued. We argue that this
disquiet is the consequence of a misunderstanding emanating from the failure of the OCL specification
to address crashing. We introduce an analysis that identifies potentially invalid computations and so
guarantees that Constraints are 2-valued and that OCL-based Model Transformations do not malfunction.

Keywords
Program Validation, Model Transformation, OCL, Crash

1. Introduction

OCL [10] evolved from Syntropy to satisfy the need to elaborate UML [12] diagrams with
constraint details that could not sensibly be expressed graphically. Within the context of a
UML model, OCL specifies what happens within a domain-specific Utopia where nothing bad
happens, not even when the user models real problems.

OCL is not just a model-oriented pseudo-code. OCL is a specification language that is also
executable. The OCL specification makes some concessions to realizability by prohibiting infi-
nite collections and tolerating indeterminacy for operations such as Set::asOrderedSet().
However there is very little consideration of what happens when things go wrong; the single
solution of an invalid value is used for all problems.

In this paper we give detailed consideration to how OCL goes wrong and refine the specifica-
tion so that when OCL goes wrong, it does so usefully and predictably.

We will use the emotive term crash for going wrong, since all programmers understand what
a crash is. It avoids any confusion with terms such as invalid/exception/error/failure that may
be associated with particular solution approaches.

While reviewing the many ways in which an OCL evaluation can crash, we identify the
need for more than an ill-considered one-size-fits-all solution. In particular, we identify that
there is nothing that can, or should be done, for some crashes, and so it is very desirable for
these to be reliably propagated for resolution by the user. In contrast other crashes are the
undesirable consequence of inadequate programming. We introduce a validity analysis to

OCL 2021: 20th International Workshop on OCL and Textual Modeling, June, 2021, Bergen, Norway
" ed at willink.me.uk (E. D. Willink)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ed at willink.me.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

identify the inadequacies and so guarantee that OCL will always crash desirably and never
crash undesirably.

Once we introduce rigor to OCL’s crashing, we are forced to confront the conflicts between
recursion, commutativity and short-circuits for the Boolean and and or operations. We refine
their specification to remove the conflicts. Commutativity is only supported where the validity
analysis proves that the usage isCommutable. We observe that commutativity is not actually
necessary if pairwise idempotence is replaced by multi-term redundancy pruning.

In Section 2 we review the ways in which OCL can crash so that in Section 3 we outline what
we need to achieve and in what respects the OCL specification needs to be tweaked. Section 4
presents a running example to show how even the simplest of invariants may be unsafe. In
Section 5 we introduce the analysis and symbolic evaluation that diagnoses all crash hazards
and in Section 6 we identify opportunities for better practice that exploits the validity analysis.
In Section 7 we describe how far the implementation work has progressed. Finally in Section 8
we review the related work and conclude in Section 9.

2. Crashes

Programmers in most languages are resigned to the need to debug their programs to fix bugs and
to handle exceptions where problems are unavoidable. OCL has no exception capability. Rather
than throwing an exception as an out-of-band ‘return’, OCL returns the invalid singleton
value as an in-band result. In principle, these two mechanisms are equivalent, particularly if a
practical OCL implementation supports a richer invalid that includes details of the problem
while continuing to behave as a singleton.

Many OCL programmers are unhappy that the in-band return of invalid means that an
OCL Constraint is not 2-valued despite being a self-evident arbiter of whether some condition
is satisfied or not. This unhappiness is actually a misunderstanding [8] since any non-trivial
constraint expressed in almost any language has three possible outcomes; satisfied, not-satisfied
and crash. The misunderstanding arises because, when the crash uses an exception mechanism,
the crash outcome bypasses the invocation code, which perceives only two outcomes. In contrast,
the OCL programmer must ensure that the invocation propagates the invalid back to the
invocation’s caller. The misunderstanding is therefore an ergonomic issue whereby the API
provided by the OCL evaluator fails to meet the expectations of the programmer, and fails
to alert the programmer to the simple solution of converting an OCL invalid result into an
exception to propagate the crash.

It would clearly be better if programs do not crash, but before we look at reasons for OCL to
crash, we will look at mechanisms that avoid some crashes.

2.1. Crash Avoidance

2.1.1. Well Formedness Rules

OCL expression terms such as PropertyCallExp navigate a model in accordance with its meta-
model, which provides a strong type system with which the OCL expressions must comply.

Compliance is defined by the Well Formedness Rules that can check that for instance the type
of the ownedSource of a PropertyCallExp conforms to the owningClass of its referredProperty.

An OCL validator should check all the WFRs, preferably at edit time, but at least before
execution, since execution is likely to fail miserably if a WFR is violated. We may therefore
assume that no crash occurs as a consequence of a WFR violation.

2.1.2. Guards

Where a programmer is aware that a crash may occur, the programmer may guard against it. A
substantive guard may use an if then else endif clause to provide alternative functionality,
or a more localized guard may use a logical operator.

(var != null) || var.doSomething() // C or Java

The Java above uses the short-circuit || operator to prevent a NullPointerException when
doSomething() is invoked when var is null.

As we shall see, the equivalent OCL operator is not short-circuit. Rather than preventing a
crash, it can allow a crash to happen and then require the crash to be uncrashed.

2.2. Catastrophic / Desirable Crashes

Problems such as Power Failure, Stack Overflow or Memory Allocation Failure can occur at
almost any time and there is nothing that a normal OCL program can do about them.

Problems such File Access, Network or Database failure may occur when a NavigationCallExp
requires an additional model element to be available. Again there is very little that a normal
OCL program can do about them.

These problems are pretty catastrophic. We categorize the consequent crashes as desirable
since the most sensible response is to diagnose the problem as helpfully as possible in the hope
that the user may understand and resolve the issue.

We will revisit Stack Overflow in Section 2.5.

2.3. Careless / Undesirable Crashes

OCL supports a null value to reify the content of slots with optional multiplicities and an
invalid value to reify the consequence of an evaluation failure. These values are not suitable
for computation and so OCL defines a strict semantics whereby usage in IteratorExp, Opera-
tionCallExp or NavigationCallExp is a failure that results in an invalid value result. The loose
wording in the specification could be formalized by preconditions for the evaluation counterpart
of the expression.

context NavigationCallExpEval
pre ValidSource: not source.oclIsInvalid();
pre NonNullSource: not source.oclIsUndefined();

Failure of a precondition is a consequence of careless programming. We therefore categorize
it as an undesirable crash. The programmer needs assistance to ensure that such crashes never
occur.

The strict execution semantics of the OCL Abstract Syntax Tree elements provides a simple
crash-and-stay-crashed behavior. The OCL Standard Library defines

• regular operations with preconditions
• irregular not-strict logical operations
• special operations that may use OclVoid or OclInvalid types

The additional preconditions provide further opportunities for careless programming.

2.3.1. Divide-by-Zero

The problem of divide-by-zero exists in many languages, but is relatively rare in practice and
often easily avoided. OCL is little used for arithmetic, so the problem hardly exists in practical
OCL, but it would nonetheless be nice to avoid the crash.

2.3.2. Index-out-of-bounds

The OrderedSet and Sequence collection types support indexing in much the same way as
Array and List in other languages. A crash occurs when an unsuitable index access is used.
This problem occurs more often than might be expected, since many users accidentally use the
0-based index typical of an execution language, rather than the 1-based index of a specification.

2.3.3. Missing Content

The collection types support reverse indexing using the indexOf operation, or the any iteration,
and crash when the indexing misses. The crash from indexOf is excessive since a null or
negative return could signal the query-miss less forcefully. It is unreasonable to expect every
use of indexOf to be guarded by an includes.

2.3.4. Bad String Content

Operations such as String::toReal() support the lexical conversion of a string to a more
interesting type. They crash if the source string is incompatible with the conversion. This crash
is again excessive since a null could signal the conversion failure. It is impractical to expect
the source string to always be lexically valid and completely pointless to require the user to
write their own parser to be used in a guard.

2.4. Uncrashing

Once a crash has occurred, the programmer may take some action to handle it.

2.4.1. Catching

In many languages a crash is propagated by throwing an exception and subsequently catch-
ing it. In OCL, the crash is propagated as the invalid value and may be ‘caught’ by the
OcAlny::oclIsInvalid() operation.

let result : OclAny = functionThatMayCrash() in
if result.oclIsInvalid() then fixupCrash() else result endif

Accommodating OclAny::oclIsInvalid() is inconvenient when realizing OCL by trans-
lation to a conventional language, since the conventional exception passing must be diligently
trapped and converted to an invalidvalues wherever oclIsInvalid() might be invoked.

Ideally the usage of oclIsInvalid() would be limited to not-invalid preconditions and
Operating System level OCL that really wants to catch a catastrophic failure to produce a
friendly diagnostic or to perhaps retry on another computer.

2.4.2. Reverting

The avoidance of crashes by short-circuit operators in conventional languages was described
in Section 2.1.2. Unfortunately the equivalent logical operators in OCL were specified to be
commutative. The incompatibility between commutativity and short-circuiting was ‘resolved’
by making the logical operators not-strict to allow them to handle null or invalid. The
commutativity is mathematically elegant but the consequent 4-valued {true, false, null,
invalid} Boolean is unpopular with users and has bad implementation consequences.

The conventional short-circuit suppresses the unwanted evaluation of the second term.

(var != null) || var.doSomething() // C or Java

The hazardous second term is not evaluated; no crash occurs.
The OCL short-circuit is

(var <> null) or var.doSomething()

Since the operator is commutative, an implementation has a free choice of the evaluation
order, and may even use different processors to evaluate the two arguments concurrently. For
less obvious OCL expressions, it may be unclear to user or tooling what the best evaluation
order is. An implementation cannot in general avoid evaluating the ‘wrong’ argument first.
Subsequent evaluation of the ‘right’ argument may provide the guard value and so require the
implementation to discard the ‘erroneous’ crash.

Even if the implementation foregoes the concurrency opportunity and evaluates first argument
first, the commutativity allows a programmer to accidentally specify the guard second, so the
implementation must still support the uncrash. Of course no sensible programmer will program
the guard term second so the implementation is just being forced to implement something that
should never happen.

Except that it does. During development, it is not uncommon for the system or at least the
OCL exposition to be defective. A user who has set a breakpoint in code associated with a crash

may find the debugger stopping at the crash and be confused when that crash fails to propagate
as expected. The problem is that the crash during the first term evaluation may be inhibited by a
malfunction in the second input evaluation. The overall execution may be pedantically correct,
but at best CPU time has been wasted by crashing. More likely the developer spends significant
time understanding the strange behavior possibly concluding, with some justification, that OCL
execution is unreliable.

Unfortunately the commutative not-strict logical operators break the simple crash-and-stay-
crashed behavior.

2.5. Stack Overflow Revisited

In Section 2.2 we lumped a Stack Overflow together with other catastrophic crashes that the
OCL programmer can do nothing about. Certainly, once such a crash occurs, it is desirable to
diagnose it, but the origin of the crash is frequently due to an uncontrolled recursion and so
down to bad programming.

Detecting the soundness of an arbitrary recursion requires a solution to the Halting Problem
which in general does not exist. We can however diagnose wherever an unsafe recursion hazard
exists.

As a minimum we can identify recursive call sites. In practice the recursion will be guarded
to ensure that it terminates. For relatively simple step and repeat recursions we may be able to
analyze the step to see whether it iterates towards a limit and so remove the pessimistic unsafe
characterization.

If the recursion terminates with the help of a short-circuit and or or operation we have a
further conflict with commutativity; it is essential that the termination guard is evaluated before
the next recursion starts.

2.6. Model Transformation

Many model transformation tools provide a disciplined framework to create or mutate an output
model using immutable OCL queries on the input model. OCL crashes pose a difficult problem.

Some transformation languages such as QVTo [11] provide a relatively conventional exception
mechanism allowing the users to handle OCL’s invalid as an exception.

For declarative transformations, functionality is modularized by rules within which OCL
specifies the matches and conversions. Execution is determined by the successful rule matches,
so potentially an OCL crash just loses a rule match and the user is disappointed that some
conversion did not happen. This is dishonest. Any crash is a transformation execution failure
and any subsequent result is a suspect compromise. A declarative model transformation must
crash enthusiastically.

When interpreting or generating code for a model transformation, the implementation must
faithfully realize all possible OCL failures so that no crash is hidden. This requires considerable
effort to support a behavior whose result is going to be thrown away. Much better to alert the
programmer to all the undesirable crashes so that only desirable crashes remain allowing for a
much simpler execution in which any crash is a fatal crash.

3. Goal

We have motivated our goal for normal OCL

• catastrophic/desirable crashes always crash
• careless/undesirable crashes never occur

This is fully in accord with OCL’s strict behavior, provided preconditions are always satisfied.
We need a validity analysis that can guarantee this proviso.

Unfortunately the OCL specification bundles a short-circuit-and behavior with a commutative-
and behavior as a composite and operation. The conflicts between these behaviors and the rest
of the specification are ‘resolved’ by undermining strictness.

However, the not-strict commutative specification of the logical operators conflicts with both
our goals.

• A catastrophic crash can be guarded and so not crash.
• A careless crash may occur before it is guarded and uncrashed.

We can satisfy our goals by revising the logical operators to be sequentially strict. A strict
evaluation of the first argument can ensure the crash happens. The first argument can then
short-circuit the unwanted second argument evaluation guaranteeing that unwanted crashes
do not occur.

This approach re-instates strictness to support a qualified form of commutativity. An al-
ternative approach to repairing the specification that retains unqualified commutativity must
compromise short-circuiting. This would be much simpler but more damaging to compatibility
and expressiveness. It would eliminate everything potentially associated with short-circuiting.

• No recursion
• No null values for Boolean operations
• No invalid values for Boolean operations

3.1. Revised and operation

Taking the and operation as an example, we are changing the result of Table A.2 of the OCL
specification from:

Use Case Input 1 Input 2 Output

2-valued true true true
true false false
false true false
false false false

Normal Short-Circuit false 𝜖 false
false ⊥ false

Commutated Short-Circuit 𝜖 false false
⊥ false false

Crash true 𝜖 𝜖
true ⊥ ⊥
𝜖 true 𝜖
⊥ true ⊥
𝜖 𝜖 𝜖
⊥ 𝜖 ⊥
𝜖 ⊥ ⊥
⊥ ⊥ ⊥

to

Use Case Input 1 Input 2 Revised Output

2-valued true true true
true false false

Normal Short-Circuit false false
Crash true 𝜖 ⊥

true ⊥ ⊥
𝜖 ⊥
⊥ ⊥

Normal short-circuit and 2-valued functionalities have unchanged results but now explicitly
avoid the redundant second argument computation. This guarantees that no desirable crash is
computed and then discarded.

The subtle change that all crashes return ⊥ (invalid) rather than sometimes 𝜖 (null) is a
reversion from the idempotence introduced in OCL 2.4 back to the simpler OCL 2.3.

3.2. Qualified Commutativity

The significant change is that the Commutated Short Circuit functionality now crashes on the
first argument without giving the second argument a chance to discard a crash. Our validity
analysis must identify this usage and commute the arguments at compile-time to ensure that a
crash-proof argument is evaluated first.

An unavoidable but diagnosable incompatibility arises only when both arguments may crash.
The diagnosis will force the programmer to sequence the potential crashes by caching at least
one of them in a let-variable.

3.3. Commutativity Utility

It seems helpful to review to what extent unqualified commutativity is actually necessary.
A simple traditional example of the utility of commutativity comes from mental arithmetic

where 3*15 is easier to calculate than 15*3, since people are more familiar with their 3
rather than 15 times tables. More generally the combination of associativity, distributivity
and commutativity may allow a calculation to be refactored to minimize inaccuracies when
subtracting large nearly-equal numbers.

For Boolean arithmetic, ease of calculation is irrelevant, but a refactoring exploiting idem-
potence is essential to allow elimination of redundant terms. However commutativity is only
necessary because the pairwise definition of idempotence needs to shuffle terms to enable
A & B & C & B & A to be simplified to any permutation such B & C & A. If we replace
2-term idempotence by a multi-term idempotence in which a later repeated term is redundant,
the example simplification has the unique A & B & C result that supports the optimization
while ensuring that a guarding term precedes a guarded term.

Unqualified commutativity is therefore unnecessary. The validity analysis outlined in this
paper enables the isCommutable precondition to be evaluated to determine when both arguments
are crash-proof and so permit qualified commutativity. This will be most useful at compile-time
where an expensive analysis can be tolerated to impose a smart strategy on the evaluation.
Terms could be ordered according to some heuristic such as

• most-likely-to-guard-first
• most-expensive-to-compute-last
• most-likely-to-contribute-to-a-common-subexpression-first

The resulting OCL Abstract Syntax can capture the compile-time optimization. The run-time
can blindly follow the defined order, since it is unlikely that the run-time can afford the overhead
of determining a more optimum order and fairly unlikely that the run-time has extra profiling
information to allow a better decision than at compile-time.

If concurrent evaluation of commutative terms is required, it will be necessary to augment the
OCL OperationCallExp with a may-be-concurrent flag to capture the result of the compile-time
analysis that guarantees that the terms are crash-proof and so commutable or parallelizable.

4. Running Example

Our running example considers the very simple class constraint shown using OCLinEcore [15]
in Fig 1.

The NaiveExample class contains an Integer attribute named count and an invariant to
require a positive value.

It would seem self evident that the invariant is 2-valued corresponding to satisfied/not-
satisfied, but it is not. There are two crash hazards.

Figure 1: Naive Example

Figure 2: Fixed Example

4.1. Hazards

If the host model is served by a cloud network or database, there is a possibility that the
PropertyCallExp access to count may fail with some form of network error. This error is treated
as invalid by OCL and consequently the evaluation of the constraint yields an invalid result.
As noted above, this rather pedantic but catastrophic concern is sensibly resolved by a strict
any-crash-always-crashes philosophy.

Fig 1 also shows the OCLinEcore editor’s hover text to reveal the underlying Property dec-
laration. It has a fully qualified name example::NaiveExample::count, primitive type
Integer and multiplicity [?]. The optional multiplicity allows the value of count to be null.
In Ecore [7], where the emphasis is on simple default construction of Java objects, the default
multiplicity lower bound for all objects is 0. Consequently this is the OCLinEcore default and so
a widespread practice. In contrast, for UML, the lower bound multiplicity default is unity so that
a null is only permitted after an explicit user action. For either representation, a valid Property
may specify that null is an acceptable value. The null value violates the strict precondition
of the comparison operation. It crashes the invariant and disappoints the user hoping for a
2-valued outcome.

We require our tooling to support elimination of this not-2-valued hazard by diagnosing
that the comparison operator requires non-null/non-invalid inputs but that an actual input
MayBeNull.

4.2. Fixes

The user may easily fix the problem by correcting the optional [?] multiplicity to the non-
optional [1]. Alternatively, if a null value is a required aspect of the design, the user may
correct the invariant as shown in Fig 2.

The implies operation guards the comparison preventing the crash, but naively the tooling

Figure 3: Fixed Example Abstract Syntax Tree

will continue to diagnose the hazard unless the tooling understands the program control flow
consequences of the sequentially-strict implies operation.

5. Program Analysis

Our running example shows that even simple OCL code can have a problem that can be fixed.
We now introduce an analysis to alert the user to the need for fixes, and to confirm that sufficient
fixes have been applied to guarantee that no undesirable crashes occur, and that all desirable
crashes always crash. We first review the conventional run-time evaluation of our example
OCL expression.

self.count <> null implies self.count > 0

5.1. Simple Evaluation

The OCL specification defines the Abstract Syntax of OCL expressions. Fig 3 shows the Pivot-
based Eclipse OCL AST of the fixed example invariant using a UML Object Diagram-like
exposition of the XML serialization. (Solid lines and diamonds for compositions, dashed lines
for references, XML namespace:element-type box titles.)

The top of the diagram shows the Class named FixedExample with count Property and
PositiveCount Constraint metamodel elements. The Constraint is realized by an ExpressionIn-

OCL with a self ParameterVariable and the ownedBody OCL expression tree with an implies
OperationCallExp at its root1.

The ownedSource sub-tree comprises another OperationCallExp for the <> operation with
further sub-trees comprising a PropertyCallExp to evaluate the count property upon the result
of the VariableExp that accesses the self ParameterVariable. The second sub-tree comprises a
NullLiteralExp that evaluates to the null value.

The ownedArguments sub-tree of the implies comprises a very similar subtree to again
evaluate self.count but to use a > operation to compare against the 0 IntegerLiteralExp.

At run-time this constraint may be used to confirm the well-formedness of each element of a
user model. Each instance of FixedExample is bound in turn to the self ParameterVariable
and then the ownedBody is evaluated by bottom up tree traversal with each descendant returning
a result to its ancestor.

Execution therefore starts at the bottom left as a VariableExp accesses the self value and
passes its value as the ownedSource for its parent PropertyCallExp that accesses the count slot
and passes it as the ownedSource of the <>. The depth first traversal continues by providing null
as the ownedArguments input of the <> from the NullLiteralExp. With both inputs computed,
the <> can pass its result to as ownedSource for the implies, which once a similar traversal
has computed its ownedArguments input can return the overall result to the ExpressionInOCL.

5.2. Precondition Evaluation

In OCL, operations such as > are strict requiring all inputs to be evaluated and to be non-invalid
before execution. Whether operations also require non-null inputs is determined by the [?] or
[1] multiplicity of each operation parameter. The specification wording can be formalized by
preconditions.

operation Integer::>(arg : Integer[1]) : Boolean {
precondition: not self.oclIsInvalid();
precondition: not arg.oclIsInvalid();
precondition: not self.oclIsUndefined();
precondition: not arg.oclIsUndefined();
precondition: self.oclIsKindOf(Integer);
precondition: arg.oclIsKindOf(Integer);

}

A full evaluation should validate these and other preconditions by evaluating them. Eclipse
OCL [13] never executes preconditions. USE [16] can do so when requested.

The conventional use of the OCL well formedness rules supports a static analysis that ensures
that all input values are type compatible. Here we are concerned with a more extensive static
analysis to ensure that all preconditions are satisfied. The static analysis occurs at edit/compile-
time making evaluation at run-time redundant.

1The referredOperation links to the Standard Library model are omitted

5.3. Symbolic Evaluation

At edit/compile-time we have no actual instances, rather we need to prove that for all possible
instances the result will be either 2-valued or a desirable crash. With our revision to strict
semantics, for everything except for the sequentially-strict logical operations, we ‘just’ need to
prove that no undesirable crash can occur.

For our example, we have intuitively identified that self.count > 0may crash for invalid
or null values of count. More rationally, the self object is not invalid and instance slots
cannot contain invalid values, so an invalid value is only possible as a consequence of
a database/network failure. This would be a desirable crash. However the instance slot can
contain a null value. The self.count <> null guard uses implies to protect against this
null value. Activating this protection requires a false value for the <> output, enabling us to
deduce that the inputs are different.

This achieves what we want, but it has required us to deduce properties of the <> inputs
from its output. This is a reverse evaluation that requires distinct implementation programming
and which scales badly since only single input monotonic operations support useful deduction
of an input from a known output.

We can avoid reverse flow deductions by instead hypothesizing that an undesirable crash
can occur and demonstrate that forward evaluation leads to a contradiction. For our example,
we consider the hypothesis

execution is attempted for: self.count > 0
when: self.count <> null

This evaluation can be performed by a symbolic evaluator that elaborates the standard
evaluator to use a symbolic value wherever a constant value is not known.

5.4. Boolean Symbolic Evaluation

For simple invariants, it is sufficient for the SymbolicValue to be a tuple maintaining the following
information for our partial knowledge:

• Value Type : Type[1]
• MayBeInvalid : Boolean[1]
• MayBeNull : Boolean[1]

The MayBeInvalid Boolean distinguishes the two symbolic possibilities: MayBeInvalid,
MayNotBeInvalid. The third IsInvalid possibility is a constant literal of type OclInvalid.

The MayBeNull Boolean distinguishes the two symbolic possibilities: MayBeNull, MayNot-
BeNull. The third IsNull possibility is a constant literal of type OclVoid.

Resuming our example:

self.count <> null implies self.count > 0

The symbolic evaluation needs to confirm that no undesirable crash can occur for the >
OperationCallExp in self.count > 0.

5.4.1. Base Symbolic Evaluation

An overall symbolic evaluation of our invariant uses the initial symbolic value.

Symbolic Variable Value Type MayBeInvalid MayBeNull
self FixedExample false false

and evaluates all other constraints and preconditions

AST element AST Type Precondition

self ParameterVariable not self.oclIsInvalid()
not self.oclIsUndefined()

self.oclIsKindOf(FixedExample)
self VariableExp
null NullLiteralExp

0 IntegerLiteralExp
self.count PropertyCallExp not source.oclIsInvalid()

not source.oclIsUndefined()
source.oclIsKindOf(FixedExample)

self.count OperationCallExp not source.oclIsInvalid()
<> not arg.oclIsInvalid()

null not source.oclIsUndefined()
not arg.oclIsUndefined()

source.oclIsKindOf(Integer)
arg.oclIsKindOf(Integer)

self.count OperationCallExp not source.oclIsInvalid()
> not arg.oclIsInvalid()
0 not source.oclIsUndefined()

not arg.oclIsUndefined()
source.oclIsKindOf(Integer)

arg.oclIsKindOf(Integer)
self.count <> null OperationCallExp not source.oclIsInvalid()

implies not arg.oclIsInvalid()
self.count > 0 not source.oclIsUndefined()

not arg.oclIsUndefined()
source.oclIsKindOf(Boolean)

arg.oclIsKindOf(Boolean)

This gives the symbolic values of each AST node as

AST element Value Type MayBeInvalid MayBeNull

self FixedExample false false
self.count Integer false true

null OclVoid false true
self.count <> null Boolean false false

0 Integer false false
self.count > 0 Boolean true false

self.count <> null Boolean true false
implies self.count > 0

Five of the six self.count > 0 preconditions are satisfied by the symbolic values.
The sixth, not source.oclIsUndefined()might not be satisfied since, for its self.count

source, MayBeNull is true and so propagates as MayBeInvalid after the comparison.

5.4.2. Hypothesized Symbolic Evaluation

We can establish that the sixth precondition is satisfied by showing that a contradiction results
from the hypothesis that the self.count can be executed to give a null value.

We bind an additional non-symbolic value null as the symbolic value of self.count.

Symbolic Variable Value Type MayBeInvalid MayBeNull
self.count OclVoid false true

We impose additional preconditions on the short-circuit and if-then-else ancestors of the
hypothesized value to ensure that the control path that evaluates the hypothesized value is
executable.

AST element AST Type Constraint

self.count <> null OperationCallExp source = true
implies self.count > 0

Re-evaluating the symbolic values of each AST node for the new known values and checking
all constraints we find the required contradiction. self.count <> null now evaluates
to false contradicting the new precondition that it is true when used as the source of the
implies operation.

5.4.3. Intuition

Our running example is very simple, closely emulating the simplest of guard idioms that most
programmers have used many times. The solution is therefore pretty intuitive.

Laboriously working through the example as symbolic values, constraints, hypothesis and
contradiction demonstrates how the magic of intuition and reverse evaluation is replaced by
predictable rigor that can scale to non-trivial problems.

Boolean Symbolic Evaluation is sufficient to cope with the complexities of unsafe usage of
null or invalid.

5.5. Real Symbolic Evaluation

Although OCL is not often used for floating point calculations, OCL provides a Real type for
which division by zero has an undesirable crash hazard.

operation Real::/(den : Real) : Real {
precondition: den <> 0;

}

The edit/compile-time analysis should therefore diagnose the rare divide-by-zero hazards.
For the simple case, it is sufficient for a SymbolicRealValue to maintain a MayBeZero state so

that the typical

if den <> 0 then num / den else ... endif

detects that the divide-by-zero case has been avoided and that the programmer has taken
responsibility for solving the problem.

For the general case, it is unlikely that a symbolic analysis can adequately understand non-
trivial floating point operations and so the programmer will be forced to adopt the simple-case
guard.

5.6. Integer and Collection Symbolic Evaluation

In addition to an Integer variant of the rare divide-by-zero hazard, a much more serious hazard
arises from a bad index for e.g.

aSequence->at(badIndex)

The OCL specification provides the preconditions:

operation Sequence<T>::at(i : Integer) : T {
precondition: i > 0;
precondition: i <= self->size();

}

A SymbolicIntegerValue needs to track any knowledge regarding the Maximum or Minimum
possible values both as absolute or relative to the size() of a base SymbolicCollectionValue.

• Actual Type : Type[1]
• MayBeInvalid : Boolean[1]
• MayBeNull : Boolean[1]
• Maximum : Integer[?]
• Minimum : Integer[?]
• MaximumBase : SymbolicCollectionValue[?]
• MinimumBase : SymbolicCollectionValue[?]

The symbolic evaluation of all collection operations needs to relate the output symbolic value
to the input so that for e.g. Sequence::append, the minimum and maximum output size is
one larger than the input size. But for e.g. OrderedSet::append, only the maximum output
size increases.

5.7. Content Symbolic Evaluation

In addition to tracking the sizes of collections it is also necessary to track known content of
collections so that an includes guard, including action, or select filter can satisfy the
validity requirements of a subsequent any iteration.

6. Corollaries

Our validity analysis has the goal of guaranteeing that no precondition ever fails. This changes
the utility and capabilities of the tooling.

6.1. Preconditions

Without the analysis, a precondition is an additional expression that may cause a crash if
evaluated at run-time on actual model values. Since the precondition often just anticipates
a crash that would occur anyway, the utility of a precondition is limited to improving the
diagnostic that accompanies the crash.

With the analysis, executing preconditions at run-time is redundant. The symbolic execution,
at edit/compile-time, on all possible symbolic model values, guarantees that the precondition is
satisfied.

Preconditions become an important part of the design and are exploited and checked at
edit/compile-time. A too-weak precondition will be diagnosed by a crash hazard within the
operation declaring the precondition. A too-strong precondition will be diagnosed by a crash
hazard when the operation declaring the precondition is invoked.

6.2. Bodyconditions and BodyExpressions

The Object Constraint Language is actually an expression language so that the functionality of
an Operation or Property is characterized by a body-expression for the respective ownedBody or
ownedDefaultValue. UML only supports constraints and so the result = bodyexpression
idiom reformulates the arbitrarily-typed body-expression as the Boolean-typed Constraint. The
UML exposition is indistinguishable from a postcondition.

When specifying OCL, the use of a body-expression is desirable since an implementation
may be able to use it for straightforward code generation.

6.3. Postconditions

For an operation such as sort(), a postcondition is appropriate to specify the generic charac-
teristics of a bubble or quick sort without imposing any particular implementation.

In addition to the obvious result = ... to specify the final result, it is also necessary
to provide postconditions for each of the properties of a SymbolicCollectionValue such as
result->size() = self->size() + 1.

Postconditions are never executed by Eclipse OCL. Their execution may be requested in USE.
When executed at run-time, they require execution overheads for no benefit, until one fails, at
which point a crash must be handled.

Once postconditions form part of the edit/compile-time analysis, many too-weak/too-strong
problems may be uncovered in the same way as for preconditions. For library operations at
least, a new occasional build-time test could animate each operation with a diverse suite of
input values that check the postconditions. For model operations, a similar opportunity exists
but work on automated test model generation has revealed challenges.

6.4. Assertions

The new validity analysis benefits from its metamodel focus, but it is never going to be as
powerful as a mathematical proof tool and even such specialized tools are unable to prove
everything. It is therefore inevitable that a pessimistic validity analysis will have false positives
diagnosing non-hazards.

The user will have to provide assistance. An additional invariant or a more explicit guard may
often solve the problem. For the harder cases it may be necessary to add an assertion capability.

OclAny::oclAssert(constraint : Lambda(T) : Boolean[1],
justification : String[1]) : OclAny = self

The assertion returns its source as its result and asserts that the constraint is true for the
result2. The constraint may link to a possibly formal proof of the constraint facilitating a
QA review of the ad hoc assertions.

The challenge is therefore to make the program flow analysis powerful enough to reduce the
number of false positives to a level where the extra user effort to resolve the hazards is more
than repaid by the benefits of no crashes.

In many cases, the need for an assertion may alert the user to an unjustified optimism as to
the true characteristics of all possible models.

6.5. Static Single Assignment

Symbolic evaluation in OCL is much simpler than in many other languages since OCL is side
effect-free, consequently any Common Sub-Expression [1] is immutable and has the same
(symbolic) value wherever used. In other languages it may be necessary to refactor to construct
a Static Single Assignment representation in which each variable has only a single value. For
OCL, all terms are inherently in SSA form.

6.6. Multiple/Cascade Invariants

The constraints for a non-trivial class often comprise some simple obvious constraints and
increasingly complicated constraints that depend on the simpler ones.

If each constraint is written in its minimal form and each constraint is checked individually,
the tooling is liable to accompany the diagnosis of a simple constraint failure by gratuitous
crash diagnoses from the more complicated constraints.

2The Lambda type is the consequence of modeling the passing of OCL expressions to e.g. iteration bodies.

Conversely, if each constraint is written in its maximal form, the duplication of each simple
constraint makes the more complicated constraint hard to read and so leads to maintenance
difficulties.

Once we use symbolic evaluation and associate a distinct symbolic value with each distinct
AST element, the dilemma goes away. The multiple constraints are part of a logical conjunction
for which common sub-expression elimination removes duplicates. Symbolic evaluation ob-
serves expression precedence to only traverse credible paths once. Only the first failure in the
depth first traversal will be diagnosed.

6.7. Exceptions

Our validity analysis guarantees that no undesirable crashes occur, and that desirable crashes
always crash. For the benefit of Operating System level OCL that needs to handle a genuine
crash, the ability to use OclAny::oclIsInvalid() to catch a crash could be enhanced by an
OclAny::oclAsException() method to unpack the invalid singleton into a new Exception
class instance for comprehensive handling.

7. Current Status and Further Work

This phase of work was initially driven by the challenges of faithfully implementing undesirable
crashes for a QVTc/QVTr Java code generator [14]. The inconveniences of uncrashing logical
operations spiral once the logical operations define complex relation guards; an unmatching
capability is required. Since the awkwardness of the implementation corresponds quite closely
to surprising behavior for the user, it is much more appropriate to push back and alert the user
to the hazards and so avoid generating any of the difficult code. For model transformation, the
no-undesirable-crashes, all-crashes-always-crash policy is better, simpler and faster.

The work continued the null-safe navigation work [9] which initially required almost all
navigation operators to be changed to their safe counterparts; a widespread effort for no real
benefit. Extending the null-safe declarations to support null-free collection reduced the changes
to genuine hazards. However limited heuristic program control flow analysis meant that only
simple guards were recognized as avoiding the hazard.

The new work expands from just null hazards to all precondition failures with a much more
comprehensive program flow analysis to propagate, for instance, a known symbolic collection
size or content to discount a hazard.

The initial approach of deducing the values of variables backwards from the point at which a
guard provides extra knowledge gave way to a forward evaluation of all relevant constraints to
contradict hypotheses for each potential hazard.

So far, the prototype demonstrates that an initial symbolic evaluation can associate an overall
MayBeInvalid and MayBeNull state for each (common-)sub-expression. These states can be
refined on a local per-expression basis as each symbolic re-evaluation subject to a hypothesis
contradicts the MayBeInvalid hypothesis. This is currently limited to Boolean Symbolic Evalua-
tion and only a small number of common operations have had their preconditions accurately
codified.

Further work is required to codify all operations, support Integer and Content Symbolic
Evaluation and to aggregate all applicable invariants to contribute to the overall common-sub-
expressions.

Further further work should support auto-generation of all operation-specific code from OCL
definitions of their preconditions and bodies.

8. Related Work

Preconditions and postconditions are an essential part of design by contract endorsed by the
OCL specification [10], but because they are not much used in practice, related deficiencies in
the OCL specification have not been reported. The USE tool [16] is able to execute preconditions
and postconditions at run-time. Eclipse OCL [13] never executes them.

The inadequacy of preconditions and postconditions has been highlighted by the proposals
to add support for framing conditions [6] that simplistically assert that nothing else changes. It
is not clear that framing conditions are necessary for OCL since the prohibition on side-effects
ensures nothing changes that isn’t mentioned in a postcondition.

Work on automated test model generation [2],[3],[4] produces suites of test models that can
be animated. The preconditions can guide the production of good models and motivate the
production of bad models.

Tools such as EMFtoCSP [5] and UMLtoCSP establish metamodel consistency by searching
for models that demonstrate that all metamodel constraints can be satisfied. An inadequate
metamodel is detected if a particular class or constraint is dead with respect to all models
searched. The constraints are translated from OCL to a CSP solver where they are repetitively
evaluated for candidate models.

These usages rely on converting the (UML) metamodel and OCL constraints into the language
of a CSP or SAT solver where searches/syntheses proceed. The precondition is assumed to be
internally good and the corollaries are assessed.

In this work, each precondition is proved to be internally good without needing to synthesize
any models. Whether the precondition contributes to a usable system is not relevant. We just
guarantee that no precondition can ever fail and so remove an impediment to both normal and
automated search usage.

9. Conclusions

We have identified the inadequate consideration of crashes as a contribution to the disappoint-
ment of many OCL users that constraints are not 2-valued.

We have distinguished between catastrophic desirable crashes and careless undesirable
crashes from precondition failures.

We have introduced a compile-time analysis to detect and so guarantee that desirable crashes
always crash and that undesirable crashes never occur.

We can look forward to common programming errors such as off-by-one ordered collection
index crashes being avoided and so find that constraints are indeed the 2-value construct that
users expect.

The prototype implementation within Eclipse OCL shows promise but has revealed how
much more can be done.

References

[1] Aho, A., Sethi, R., Ullman, J.: Compilers, Principles, Techniques and Tools, Addison Wesley,
1986

[2] Brucker, A., Krieger, M., Longuet, D., Wolff, B.: A Specification-based Test Case Generation
Method for UML. 10th International Workshop on OCL and Textual Modeling, October, 2010,
Oslo, Norway. https://modeling-languages.com/events/OCLWorkshop2010/submissions/
ocl10_submission_7.pdf

[3] Francisco, M., Castro, L.: Automatic Generation of Test Models and Propertiesfrom UML
Models with OCL Constraints. 12th International Workshop on OCL and Textual Modeling,
September, 2010, Innsbruck, Austria.
https://st.inf.tu-dresden.de/OCL2012/preproceedings/07.pdf

[4] Gogolla, M., Burgueño, L., Vallecillo, A.: Model Finding and Model Completion with USE.
18th International Workshop on OCL and Textual Modeling. Copenhagen, Denmark, October
14, 2018. https://ceur-ws.org/Vol-2245/ocl_paper_9.pdf

[5] Gonzàlez, C., Bũttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A Tool for the Lightweight
Verification of EMF Models. Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FormSERA), Jun 2012, Zurich, Switzerland. hal-00688039 https://hal.inria.fr/file/
index/docid/688039/filename/emftocsp.pdf

[6] Przigoda, N., Filho, J., Niemann, P., Wille, R.: Frame Conditions in Symbolic Representations
of UML/OCL Models. 2016 ACM/IEEE International Conference on Formal Methods and Mod-
els for System Design (MEMOCODE), 2016, pp. 65-70, doi: 10.1109/MEMCOD.2016.7797747.
https://iic.jku.at/files/eda/2016_memocode_frame_conditions_symbolic_representation.
pdf

[7] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework.
Addison-Wesley, Jun 2008

[8] Willink, E.: Reflections on OCL 2. Journal of Object Technology. Vol.19, No. 3, 2020.
https://dx.doi.org/10.5381/jot.2020.19.3.a17

[9] Willink, E.: Safe Navigation in OCL. 15th International Workshop on OCL and Textual
Modeling, September 8, 2015, Ottawa, Canada.
https://ocl2015.lri.fr/OCL_2015_paper_1111_1400.pdf

[10] Object Constraint Language. Version 2.4., OMG Document Number: formal/2014-02-03,
Object Management Group. February 2014, https://www.omg.org/spec/OCL/2.4

[11] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version
1.3. OMG Document Number: ptc/16-06-03, June 2016. https://www.omg.org/spec/QVT/1.3

[12] OMG Unified Modeling Language (OMG UML), Version 2.5, OMG Document Number:
formal/15-03-01, Object Management Group, March 2015,
https://www.omg.org/spec/UML/2.5

[13] Eclipse OCL Project. https://projects.eclipse.org/projects/modeling.mdt.ocl

https://modeling-languages.com/events/OCLWorkshop2010/submissions/ocl10_submission_7.pdf
https://modeling-languages.com/events/OCLWorkshop2010/submissions/ocl10_submission_7.pdf
https://st.inf.tu-dresden.de/OCL2012/preproceedings/07.pdf
https://ceur-ws.org/Vol-2245/ocl_paper_9.pdf
https://hal.inria.fr/file/index/docid/688039/filename/emftocsp.pdf
https://hal.inria.fr/file/index/docid/688039/filename/emftocsp.pdf
https://iic.jku.at/files/eda/ 2016_memocode_frame_conditions_symbolic_representation.pdf
https://iic.jku.at/files/eda/ 2016_memocode_frame_conditions_symbolic_representation.pdf
https://dx.doi.org/10.5381/jot.2020.19.3.a17
https://ocl2015.lri.fr/OCL_2015_paper_1111_1400.pdf
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/QVT/1.3
https://www.omg.org/spec/UML/2.5
https://projects.eclipse.org/projects/modeling.mdt.ocl

[14] Eclipse QVT Declarative Project.
https://projects.eclipse.org/projects/modeling.mmt.qvtd

[15] OCLinEcore. https://wiki.eclipse.org/OCL/OCLinEcore
[16] USE, The UML-based Specification Environment.

https://useocl.sourceforge.net/w/index.php/Main_Page

https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://wiki.eclipse.org/OCL/OCLinEcore
https://useocl.sourceforge.net/w/index.php/Main_Page

	1 Introduction
	2 Crashes
	2.1 Crash Avoidance
	2.1.1 Well Formedness Rules
	2.1.2 Guards

	2.2 Catastrophic / Desirable Crashes
	2.3 Careless / Undesirable Crashes
	2.3.1 Divide-by-Zero
	2.3.2 Index-out-of-bounds
	2.3.3 Missing Content
	2.3.4 Bad String Content

	2.4 Uncrashing
	2.4.1 Catching
	2.4.2 Reverting

	2.5 Stack Overflow Revisited
	2.6 Model Transformation

	3 Goal
	3.1 Revised and operation
	3.2 Qualified Commutativity
	3.3 Commutativity Utility

	4 Running Example
	4.1 Hazards
	4.2 Fixes

	5 Program Analysis
	5.1 Simple Evaluation
	5.2 Precondition Evaluation
	5.3 Symbolic Evaluation
	5.4 Boolean Symbolic Evaluation
	5.4.1 Base Symbolic Evaluation
	5.4.2 Hypothesized Symbolic Evaluation
	5.4.3 Intuition

	5.5 Real Symbolic Evaluation
	5.6 Integer and Collection Symbolic Evaluation
	5.7 Content Symbolic Evaluation

	6 Corollaries
	6.1 Preconditions
	6.2 Bodyconditions and BodyExpressions
	6.3 Postconditions
	6.4 Assertions
	6.5 Static Single Assignment
	6.6 Multiple/Cascade Invariants
	6.7 Exceptions

	7 Current Status and Further Work
	8 Related Work
	9 Conclusions

