
Experimenting with functional features

of the Object Constraint Language

Daniel Calegari, Marcos Viera

Universidad de la República, Uruguay

{dcalegar,mviera}@fing.edu.uy

19th International Workshop in

OCL and Textual Modeling

context

OCL combines model-oriented and
functional features

−− A teammeeting has to be organized for a whole team
context Teammeeting inv:

self.participants −> forAll(team = self.for)

context

we have explored a func1onal approach to

support the construc1on of an OCL

interpreter (for invariants)

• a sandbox for experimenta1on

• an EDSL in Haskell + a tool Haskell OCL

• the func1onal infrastructure can be

predefined and automa1cally generated

D. Calegari and M. Viera, “On the functional interpretation of OCL,” in Proc. of the 16th
Workshop on OCL and Textual Modelling, ser. CEUR vol. 1756, pp. 33–48, 2016

G. Sintas, L. Vaz, D. Calegari, M. Viera. “Model-Driven Development of an Interpreter for

the Object Constraint Language”. Proc. CLEI 2018, IEEE: 120-128

objectives

experiment with functional features
proposed by the scientific community
(e.g., pattern matching, lazy evaluation,
lambda abstractions, etc.)

how OCL interpretation benefits from such
an encoding and its limitations
• not focusing on proposing new features
• not on making any comparison w.r.t.

technological support for the language

interpretation of models & meta

metamodel and models are automatically
translated to Haskell datatypes/values

Boilerplate code is defined to navigate
through a model easily/uniformly

invariants are automatically translated to
Haskell functions mimicking its structure

monad (OCL m a): computations within a model
m, returning a value a (OCL four-valued logic)

interpretation of invariants

−− A teammeeting has to be organized for a whole team
context Teammeeting inv:

self.participants −> forAll(a | a.team = self.for)

invariant = context _TeamMeeting [inv] inv
self = ocl self |.| participants |->|

forAll (\a −> ocl a |.| team |==| ocl self |.| for)

the OCL library

it is predefined and provides an almost
complete support for invariants and queries

lets discuss some interesting findings and
lessons learned from the experience
o functional support
o model-oriented vs functional
o monadic interpretation

Disclaimer

the following requires strong functional
programming understanding

functional support

functions are first-class citizens in Haskell

OCL defines something like functions
(e.g., when defining a let expression)

collection operators use lambda abstractions
e.g.,

reject p = select (notOCL . p)

functional support

what about higher-order functions?

-- the moderator is the one with highest priority
context Meeting inv:
let priority(Set(Teammember)) : Teammember = ... ,

getModerator(m:Meeting,
p:(Set(Teammember) −> Teammember))
: Teammember = p(m.participants)

in self.moderator = getModerator(self, priority)

there are some problems, e.g., flatten is not
easily supported when there are mul:-type
elements within the collec:on

functional support

is it feasible / valuable
to have an extensive
support for
func4ons in OCL

model-oriented vs functional

hierarchical typing and identities introduce
the main mismatch problems

some functional boilerplate can be
generated to minimize the impact

¿what about a multi-paradigm interpreter?

model-oriented vs functional

Sigma is an OCL EDSL implemented in Scala

since Scala is both func9onal and object-
oriented, their embedding does not have to
deal with mismatch problems

however, Sigma OCL expressions are not
effect-free, and formal reasoning is much
more difficult than in a purely func9onal
approach

model-oriented vs functional

is it feasible / valuable to
have a balance between
model-oriented and
func6onal interpreta6on
for OCL

monadic interpretation

a Reader monad “silently” passes a model
through the sequences of computa7ons

in some cases OCL could be benefited from
the introduc7on of controlled side effects

monads can be composed for adding these
behaviors in a modular way

invariant = context _TeamMeeting [inv] inv
self = ocl self |.| participants |->|

forAll (\a −> ocl a |.| team |==| ocl self |.| for)

monadic interpretation

Error monad represents computations
which may fail or throw exceptions

State monad consumes a state and
produce both a result and an updated state
(e.g., a repaired model)

type OCLError m a = ErrorT String (OCL m a)
invariant1 = context _Meeting [inv2]
inv2 self = do res <− ocl self |.| participants ...

if res |==| oclVal True
then return res
else throwError ”There was an error”

monadic interpretation

is it feasible / valuable to
define a modular effects
mechanism for OCL
(e.g., inspired by monads
and monad transformers)

conclusions & future work

we experimented with func0onal features
proposed for OCL and provided a different
perspec0ve of OCL as a Haskell EDSL

the expressions and their interpreta0on are
clean: modular, abstract and extensible

there are many challenges, e.g., laziness
can improve performance but also adds
memory overhead

Experimenting with functional features
of the Object Constraint Language

19th International Workshop in
OCL and Textual Modeling

Daniel Calegari, Marcos Viera
Universidad de la República, Uruguay
{dcalegar,mviera}@fing.edu.uy

