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context

OCL combines model-oriented and 
functional features

−− A teammeeting has to be organized for a whole team 
context Teammeeting inv:

self.participants −> forAll(team = self.for)



context

we have explored a func1onal approach to 

support the construc1on of an OCL 

interpreter (for invariants)

• a sandbox for experimenta1on

• an EDSL in Haskell + a tool Haskell OCL

• the func1onal infrastructure can be 

predefined and automa1cally generated
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objectives

experiment with functional features 
proposed by the scientific community 
(e.g., pattern matching, lazy evaluation, 
lambda abstractions, etc.)

how OCL interpretation benefits from such 
an encoding and its limitations
• not focusing on proposing new features
• not on making any comparison w.r.t. 

technological support for the language



interpretation of models & meta

metamodel and models are automatically 
translated to Haskell datatypes/values

Boilerplate code is defined to navigate 
through a model easily/uniformly



invariants are automatically translated to
Haskell functions mimicking its structure

monad (OCL m a): computations within a model 
m, returning a value a (OCL four-valued logic)

interpretation of invariants

−− A teammeeting has to be organized for a whole team 
context Teammeeting inv:

self.participants −> forAll(a | a.team = self.for)

invariant = context _TeamMeeting [inv] inv 
self = ocl self |.| participants |->|

forAll (\a −> ocl a |.| team |==| ocl self |.| for)



the OCL library

it is predefined and provides an almost 
complete support for invariants and queries



lets discuss some interesting findings and 
lessons learned from the experience
o functional support
o model-oriented vs functional
o monadic interpretation

Disclaimer

the following requires strong functional 
programming understanding



functional support

functions are first-class citizens in Haskell 

OCL defines something like functions 
(e.g., when defining a let expression)

collection operators use lambda abstractions
e.g.,

reject p = select (notOCL . p) 



functional support

what about higher-order functions?

-- the moderator is the one with highest priority
context Meeting inv:
let priority(Set(Teammember)) : Teammember = ... , 

getModerator(m:Meeting, 
p:(Set(Teammember) −> Teammember)) 
: Teammember = p(m.participants)

in self.moderator = getModerator(self, priority) 

there are some problems, e.g., flatten is not 
easily supported when there are mul:-type 
elements within the collec:on



functional support

is it feasible / valuable
to have an extensive 
support for 
func4ons in OCL



model-oriented vs functional

hierarchical typing and identities introduce 
the main mismatch problems

some functional boilerplate can be 
generated to minimize the impact

¿what about a multi-paradigm interpreter?



model-oriented vs functional

Sigma is an OCL EDSL implemented in Scala

since Scala is both func9onal and object-
oriented, their embedding does not have to 
deal with mismatch problems

however, Sigma OCL expressions are not 
effect-free, and formal reasoning is much 
more difficult than in a purely func9onal 
approach



model-oriented vs functional

is it feasible / valuable to 
have a balance between 
model-oriented and 
func6onal interpreta6on 
for OCL



monadic interpretation

a Reader monad “silently” passes a model 
through the sequences of computa7ons

in some cases OCL could be benefited from 
the introduc7on of controlled side effects

monads can be composed for adding these 
behaviors in a modular way

invariant = context _TeamMeeting [inv] inv 
self = ocl self |.| participants |->|

forAll (\a −> ocl a |.| team |==| ocl self |.| for)



monadic interpretation

Error monad represents computations 
which may fail or throw exceptions

State monad consumes a state and 
produce both a result and an updated state 
(e.g., a repaired model)

type OCLError m a = ErrorT String (OCL m a)
invariant1 = context _Meeting [inv2]
inv2 self = do res <− ocl self |.| participants ...

if res |==| oclVal True
then return res
else throwError ”There was an error”



monadic interpretation

is it feasible / valuable to 
define a modular effects 
mechanism for OCL
(e.g., inspired by monads 
and monad transformers)



conclusions & future work

we experimented with func0onal features 
proposed for OCL and provided a different 
perspec0ve of OCL as a Haskell EDSL

the expressions and their interpreta0on are 
clean: modular, abstract and extensible

there are many challenges, e.g., laziness
can improve performance but also adds 
memory overhead
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