

Native Support for UML and OCL Primitive Datatypes Enriched with Uncertainty in USE

Víctor Ortiz, Loli Burgueño, Antonio Vallecillo, and Martin Gogolla

OCL Workshop Munich, September 16, 2019

Previous works

L. Burgueño, T. Mayerhofer, M. Wimmer, A. Vallecillo: **Specifying quantities in software models.** Information & Software Technology 113: 82-97 (2019)

M. F. Bertoa, N. Moreno, G. Barquero, L. Burgueño, J. Troya, A. Vallecillo: Expressing Measurement Uncertainty in OCL/UML Datatypes. ECMFA 2018: 46-62

L. Burgueño, M. F. Bertoa, N. Moreno, A. Vallecillo: Expressing Confidence in Models and in Model Transformation Elements. MoDELS 2018: 57-66 **Uncertainty**: Quality or state that involves imperfect and/or unknown information

- It applies to: predictions of future events, estimations, physical measurements, or properties of a system, its elements or its environment
- due to:
 - <u>Underspecification</u> of the problem or solution domains
 - Lack of knowledge of the system, its environment, or its underlying physics
 - Lack of precision in measurements
 - Imperfect, incorrect, or missing information
 - Numerical <u>approximations</u>
 - Values and parameters <u>indeterminacy</u>
 - Different <u>interpretations</u> of the same evidences by separate parties

Measurement uncertainty

- Engineers naturally think about *uncertainty* associated with *measured values*
- Uncertainty is <u>explicitly</u> defined in their <u>models</u> and considered in model-based <u>simulations</u>
- <u>Precise notations</u> permit representing and operating with uncertain values and confidences

Measurement uncertainty

- Measurement uncertainty: A kind of *aleatory* uncertainty that refers to a set of possible states or outcomes of a measurement
- Normally expressed by a parameter, associated with the result of a measurement x, that characterizes the dispersion of the values that could reasonably be attributed to the measurand: the standard deviation u of the possible variation of the values of x
- Representation: $x \pm u$ or (x, u)
- Examples:
 - Normal distribution: (x, σ) with mean x, and and standard deviation σ
 - Interval [*a*, *b*]: Uniform distribution is assumed

$$(x, u)$$
 with $x = \frac{a+b}{2}, u = \frac{(b-a)}{2\sqrt{3}}$

JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). http://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 E.pdf

However, the situation is not the same in software models \otimes

RoundObject			
+posX : Real +posY : Real +posZ : Real +weight : Real +width : Real +height : Real			
+move(dX : Real, dy : Real, dz : Real) +catch() +drop() +fitsln(other : RoundObject)			

Useful applications in software simulation

Motivation

Uncertainty in Software Engineering

- Very <u>limited support</u> for representing uncertainty in software models
- No support for considering such properties in model-based simulations
- Not part of their type systems!

Some problems with Measurement Uncertainty

- Computations with uncertain values have to respect the *propagation of* uncertainty (uncertainty analysis)
 - In general this is a complex problem, which cannot be manually managed
- Comparison of uncertain values is no longer a Boolean property!
 - How to compare 17.7 ± 0.2 with 17.8 ± 0.2 ?
- Other primitive datatypes are also affected by uncertainty
 - Strings (OCR)
 - Enumerations
 - Collections

In our previous work...

- Extension of the OCL/UML
 - Primitive types
 - Collections

Java Library – behavior of uncertain datatypes

Our case study

Ozobot robot

- able to move in the direction its head points to
- They accept two type of commands: (1) to rotate the head, and (2) to move forward
- The mission determines the target position the robot is supposed to reach with the plan

📄 Class diagram 🖉 🗹 🗹				
Robot position : Coordinate headsTo : UReal performAllMoves()	1 target * robot Mission 1 robot * moves {ordered	Target position : Coordinate Movement move : UReal rotate : UReal performMove()	Coordinate x : UReal y : UReal coincide(c : Coordinate) : UBoolean distance(c : Coordinate) : UReal	

Our case study

 We are interested in analyzing whether the sequence of movements defined in its fulfills the mission i.e., it reaches the target position

Invariants:

```
context Coordinate::coincide(c:Coordinate):UBoolean =
    self.x = c.x and self.y = c.y
context Coordinate::distance(c:Coordinate):UReal =
    ((self.x-c.x)*(self.x-c.x) + (self.y-c.y)*(self.y-c.y)).sqrt()
```

Our case study

 We are interested in analyzing whether the sequence of movements defined in its fulfills the mission i.e., it reaches the target position

Uncertainty is important!

It should be <u>easily</u> captured and propagated

Ý

Test our Java library

Extend USE

Grammars

Java source code

Test USE (old + new functionality)

- Despite its graphical interface, the specification of models in USE is textual
- We had to modify its OCL grammar:
 - file org.tzi.use.parser.base.OCLBase.gpart

 Using the ANTLR tools, the Java lexer, parser, tokens and listeners were automatically generated

- The implementation of datatypes in USE is done in a modular way
- It distinguishes between values and expressions
 - Both have a type

org.tzi.use.uml.ocl.type

- Each class contains:
 - Constructor
 - methods such as isTypeOfUReal, isKindOfUReal, isKindOfNumber and isKindOfOclAny

org.tzi.use.uml.ocl.value

- each class applies Adapter design pattern
- and acts as a wrapper for the classes in the library

- org.tzi.use.uml.ocl.expr
- Once the types and values of the new datatypes were created,
 - make them available for their use inside OCL expressions
 - make their operations available
 - overload the existing operators such as "+"

- We followed a test-driven methodology when extending use. Thus,
 - we extensively used the testing facilities that USE provides for unit and system testing

 We included our tests under the folder src/test and executed them in batch using ANT

We check both its grammar and its behavior

Extension of USE - Testing

Conclusions and Future work

- Extension of the tool USE to enable the application of native uncertain types for capturing measurement uncertainty
- We have shown how we structured and implemented the extension
 - Future
- Check and improve (if needed) the efficiency of the execution of operations
- Extend the evaluation browser with aspects of uncertainty
- Check how far other OCL evaluators can be extended in this way
 - and study the effort required to do so

Native Support for UML and OCL Primitive Datatypes Enriched with Uncertainty in USE

Víctor Ortiz, Loli Burgueño, Antonio Vallecillo, and Martin Gogolla

OCL Workshop Munich, September 16, 2019