
Translating UML-RSDS OCL to ANSI C

K. Lano, S. Yassipour-Tehrani, H. Alfraihi
Dept. of Informatics, King’s College London

S. Kolahdouz-Rahimi,
Dept. of Software Engineering, University of Isfahan, Iran

Abstract. In this paper we describe a transformation from a subset
of OCL to ANSI C code, and we show that the generated code provides
improved efficiency compared to OCL execution using Java, C# or C++.
The transformation is itself formally specified using OCL.

1 Introduction

In this paper we describe a transformation that maps a substantial subset of
OCL 2.4 to ANSI C. C has limited expressiveness compared to more modern
languages such as Java or C#, but it has the benefits of high efficiency and small
code size. The generator can be used as a ‘virtual machine’ for the execution
of UML/OCL, as an alternative to the more usual Java/JVM implementation
route for OCL [11]. The generator is itself an example of a large scale application
defined using OCL, it consists of 125 operations and transformation rules defined
by OCL constraints.

The OCL to C translator is a subtransformation of a UML to C code gen-
erator, UML2C, for the UML-RSDS MDE language [6]. UML2C maps instance
models of the UML-RSDS class diagram (Figure 1), OCL (Figure 3) and activ-
ities metamodels to C language metamodels (Figures 2, 4 and a C statement
metamodel). We target the 1989 ANSI C standard [4].

The mapping of OCL expressions depends upon the prior mapping of types
and class structures, however it is relatively independent of the strategy cho-
sen for representing classes in C (eg., how inheritance and dynamic dispatch is
expressed), since all access to objects and their features is via an interface of
creators, lookup operations and getters/setters which have a standard signature
independent of their implementation details. For example, any instance-scope
attribute f of class C is accessed via operations getC f and setC f , for both
owned and inherited attributes (cf., Table 3, case F1.2.5). The application API
is defined in the header file app.h for each application. A library ocl.h of C func-
tions for OCL operators is also defined, and evaluation/execution of particular
OCL expressions is based upon app.h and ocl.h.

1.1 UML-RSDS

UML-RSDS enables applications to be defined using class diagrams, use cases,
constraints and activities (pseudocode). It is similar to fUML [9] in being a

subset of UML, however, unlike fUML, it is oriented to declarative specification,
with OCL constraints being used to define use cases and operations by pre and
post conditions, instead of activities. The UML-RSDS tools can synthesise a
procedural platform-independent design from such specifications, and this design
is then mapped to program code by code generators (3 generators exist for Java
versions, and there are C++ and C# generators in the latest UML-RSDS version
1.7 at nms.kcl.ac.uk/kevin.lano/uml2web).

Design synthesis operationalises the declarative specification. If an OCL ex-
pression is used in a specification to specify an update, eg.: by a postcondition
s→includes(x), this is transformed into an activity, such as s := s→including(x),
by the UML-RSDS design generator.

Specifiers are recommended to optimise their application functionality at
the specification level, eg., by using let-variables to avoid duplicated expression
evaluations. These optimisations then apply regardless of the eventual target
platform. Optimisation is also performed during the design synthesis stage, eg.,
to use bounded loops instead of fixpoint iteration where possible [6].

The tools have been extensively used since 2006, particularly in the financial
domain and for defining transformations. There are a number of restrictions and
variations in the language compared to full UML and OCL (Table 1). We have
found these variations helpful in simplifying specifications and improving the
capability for verifying specifications.

UML/OCL UML-RSDS subset/variant

Ternary associations, Omitted
Multiple inheritance

General n..m multiplicities Only 1, 0..1, or * multiplicities
on association end permitted

Integer type int, long computational numeric types
Real type double computational type
null, invalid Omitted
OclMessage, Tuple Omitted

Implicit conversion of single Omitted. 0..1 association ends
elements to collections are treated as collections

4-valued logic Classical 2-valued logic
General iterate Omitted
OclAny, oclType() Omitted

Lookup of objects by primary key value
E[value]
Additional collection operators →sort(),
→front(), →tail(), etc

Table 1. Differences between UML-RSDS and UML

Collections are assumed not to contain null elements. String-valued attributes
can be declared as identity attributes, ie., as primary keys for a class. Classes
with a subclass must be abstract.

Minor syntactic variations are the use of ⇒ for OCL implies, →exists1 for
→one, and & for and . E .allInstances is abbreviated to E when used as the LHS
of a → operator. s→includes(x) can also be written as x : s, s→includesAll(x)
as x <: s, and s→excludes(x) as x / : s.

1.2 Paper structure

Section 2 describes the mapping of types and class structures to C, Section 3
describes the OCL expression mapping, Section 4 gives an evaluation, Section 5
describes related and future work, and Section 6 gives conclusions.

2 Mapping of types and classes

Figure 1 shows part of the UML-RSDS class diagram metamodel. This is closely
based upon UML 2.2. Instances of this metamodel are mapped to instances of
a C metamodel by UML2C. The base target language is a simplified version of
the abstract syntax of C programs (Figure 2).

Fig. 1. UML class diagram metamodel (subset)

Fig. 2. C language metamodel

Table 2 shows the informal mapping of UML Types to C. The T* operator
directly interprets Collection(T), for sequences and ordered sets of string and
entity types T. Collections of collections can be mapped down to 2 levels (eg.,
Sequence(Sequence(double)) for matricies is mapped to double**). Unordered
sets and bags are implemented as binary search trees.

To achieve bidirectionality and traceability of the transformation, a new iden-
tity attribute typeId : String was introduced into Type, and ctypeId into CType.
This enables Type and CType instances to be looked-up by key value: CType[id]
is the C type instance t with t .ctypeId = id . An instance t : Type corresponds
to an instance c : CType if t .typeId = c.ctypeId .

An example transformation rule of the UML2C transformation, formalising
case F1.1.1.1 from Table 2, is:

PrimitiveType::

name = "String" =>

CPointerType->exists(p | p.ctypeId = typeId &

CPrimitiveType->exists(c | c.name = "char" & p.pointsTo = c))

This rule applies to objects self : PrimitiveType. Whenever the lhs of the rule
is true, the rhs is made true, ie., the relevant C types are looked-up or created
if they do not already exist. The semantics of E→exists(e | e.eId = v & P) in
the case that eId is an identity attribute of E is that the E object E [v] with eId
value equal to v is looked up, if it exists, and is then modified according to P .
If the object does not exist, it is created and then modified.

Classes, features and inheritances are mapped to C as shown in Table 3.

Case UML/OCL element C representation e’

F1.1.1.1 String type char*

F1.1.1.2 int, long, double types same-named C types
F1.1.1.3 boolean type unsigned char

F1.1.2 Enumeration type C enum

F1.1.3 Entity type E struct E* type

F1.1.4.1 OrderedSet(T) type T’*

(NULL-terminated array of T’, without duplicates)
F1.1.4.2 Sequence(T) type T’*

(NULL-terminated array of T’, possibly with duplicates)
F1.1.4.3 Set(T) type BSTs of T’ elements

without duplicates
F1.1.4.4 Bag(T) type BSTs of T’ elements

possibly with duplicates
Table 2. Informal mappings of types to C

Case UML element e C representation e’

F1.2.1 Class diagram D C program with D ’s name

F1.2.2 Class E struct E { ... };
Global variable struct E** e instances;

Global variable int e size;

struct E* createE(void) operation

F1.2.3.1 Instance property p : T Member T’ p; of the struct for p’s owner, E
(not principal identity where T’ represents T
attribute) Operations T ′ getE p(E ′ self)

and setE p(E ′ self ,T ′ px)

F1.2.3.2 Principal identity attribute Operations getE p, setE p,
p : String of struct E* getEByPK(char* v)
class E Key member char* p; of the struct for E

F1.2.4 Operation op(p : P) : T of E C operation T’ op E(E’ self, P’ p)

(non-static) with scope = “entity”

F1.2.5 Inheritance of A by B Member struct A* super; of struct B
Operations getB att(x) for inherited att
invoke getA att(x→super)
Operations op B(x , p) for inherited op
invoke op A(x→super , p) unless redefined in B

F1.2.6 Operation op(p : P) : T of E C operation T’ op(P’ p)

(static) with scope = “entity”
Table 3. Informal mapping of UML class diagrams to C

For each entity type E , getters and setters for each feature of E are pro-
duced, together with creation and deletion operations createE and killE, and
lookup operations getEByPK, getEByPKs in the case that E has a principal
primary key (identity attribute). These form the object API for E. Operations
for OCL collection operators acting on collections of E instances are also gen-
erated: collectE, selectE, rejectE, intersectionE, unionE, reverseE, frontE, tailE,
asSetE, concatenateE, removeE, removeAllE, subrangeE, isUniqueE, insertAtE.
An operation opE is only generated for OCL operator op if there is an occur-
rence of →op applied to a collection of E elements in the source UML/OCL
specification model.

2.1 Mapping of associations and polymorphic operations

We have found that the most complex parts of UML to code mappings are
typically: (i) managing object deletion; (ii) maintaining the consistency of op-
posite association ends. Additionally for C, expressing inheritance and dynamic
dispatch are further complex aspects. Deletion and association management op-
erations are created during design synthesis. If an association has both ends
named, then these ends need to be maintained in consistency. For example, a
– association between classes A and B , with ends ar , br will have synthesised
design operations

A::

static addA_br(ax : A, bx : B)

activity:

ax.br := ax.br->including(bx) ;

bx.ar := bx.ar->including(ax)

A::

static removeA_br(ax : A, bx : B)

activity:

ax.br := ax.br->excluding(bx) ;

bx.ar := bx.ar->excluding(ax)

and similarly for other association multiplicities. Deletion operators killE for
concrete E are also inserted into the design, these manage the deletion of aggre-
gation part objects linked to the deleted object, and the removal of the object
from all association ends. The UML2C generator therefore generates C declara-
tions and code for these operations.

General schemes for representing inheritance in C include an embedded su-
perclass struct instance in each subclass struct, and function pointers for each
supported method, or the use of vtables for function pointers. We use a pointer
member struct E* super; referring from a subclass F to its superclass E .

Dynamic dispatch of an abstract operation op(p : P) : Rt of class E with
leaf subclasses A, B , ... is carried out by a C operation op E with the schematic
definition

Rt’ op_E(struct E* self, P’ p)

{ if (oclIncludes((void**) a_instances, (void*) self))

{ return op_A((struct A*) self, p); }

else if (oclIncludes((void**) b_instances, (void*) self))

{ return op_B((struct B*) self, p); }

else ...

}

This explicit selection of the correct implementing operation corresponds to the
semantic model of polymorphic operations used by the UML-RSDS verification
tools1.

3 Mapping of UML-RSDS OCL expressions to C

Figure 3 shows the UML-RSDS OCLmetamodel, which is the source language for
the transformation. Figure 4 shows the corresponding C expression language ab-
stract syntax. New identity attributes expId and cexpId are added to Expression
and CExpression, respectively, to support bidirectionality and traceability re-
quirements. variable : String represents iterator variables x for the cases of
s→forAll(x | P), etc. A ∗ − ∗ association context from Expression to Entity is
used to record the context(s) of use of the expression.

Fig. 3. UML-RSDS OCL metamodel

1 The operation versions should have the same signatures, overloading is not sup-
ported.

Fig. 4. C expression metamodel

The mappings are divided into four subgroups: (i) mapping of basic expres-
sions; (ii) mapping of logical expressions; (iii) mapping of comparator, numeric
and string expressions; (iv) mapping of collection expressions.

The basic expressions of OCL generally map directly to corresponding C
basic expressions. Table 4 shows examples of the mapping for these.

Table 5 shows the mapping of logical expressions and operators to C.
The auxiliary operations fP are constructed to only have a single parameter,

this means that mapping of forAll, select, etc is only supported where the rhs
expressions depend on a single variable. The alternative (used in the UML-RSDS
Java, C#, and C++ translators) is to create a specialised iterator implementa-
tion for each different use of an iterator operation.

Table 6 lists examples of comparator operators and their mappings to C.
The introduced functions oclIncludes, equalsSet , etc, are all defined in ocl.h,

since they are not specific to particular element types.
Tables 7, 8 show examples of the values and operators that apply to ordered

sets and sequences, and their C translations. Some UML-RSDS OCL operators
(unionAll, intersectAll, symmetricDifference, subcollections) were considered a
low priority, because these are infrequently used, and were not translated. Similar
collection operators are provided for sets and bags in ocl.h.

A common form of OCL expression is the evaluation of a reduce operation
(min, max, sum, prd) applied to the result of a collect, eg.: s→collect(e)→sum()
where e is double-valued. This is mapped to:

sumdouble(collectE double(s ′, fe), oclSize((void ∗ ∗) s ′))

because it is not possible to find the length of a collection of primitive val-
ues. Likewise, s.att .sum is mapped to sumdouble(getAllE att(s ′), oclSize((void ∗
∗) s ′)). For a literal sequence s, oclSize(s ′) can be directly determined and used.

Table 9 shows the translation of select and collect operators on sequential
collections. selectMaximals and selectMinimals are not currently mapped to C.

UML-RSDS OCL expression e C representation e ′

self self as an operation parameter

Data feature f of context E
with no objectRef getE f (self)
E data feature f
of instance ex getE f (ex ′)

Operation call op(e1, ..., en) op E((struct E*) self, e1’, ..., en’)
or obj .op(e1, ..., en) of op E((struct E*) obj’, e1’, ..., en’)
instance entity scope op of E

Call op(e1, ..., en) of op(e1’, ..., en’)
static/application scope op

E attribute/role f getAllE f (exs ′)
of collection exs (duplicate values preserved)

col→at(ind) (col’)[ind’ - 1]
Sequence/ordered set col

E [v] getEByPK(v’)
v single-valued
E [vs] getEByPKs(vs’)
vs collection-valued

E .allInstances concrete E e instances

boolean true, false TRUE, FALSE
Table 4. Mapping specifications for basic expressions

UML-RSDS OCL expression e C expression e ′

A & B A’ && B’

A or B A’ || B’

not(A) !A’

E->exists(P) existsE(e instances,fP) fP evaluates P’
e->exists(P) existsE(e’,fP)

E->forAll(P) forAllE(e instances,fP) fP evaluates P’
e->forAll(P) forAllE(e’,fP)

Table 5. Mapping specifications for logical expressions

OCL expression e C representation e ′

s->includes(x) oclIncludes((void ∗ ∗) s ′, (void∗) x ′)
s sequential collection

s->excludes(x) oclExcludes((void ∗ ∗) s ′, (void∗) x ′)
s sequential collection

x = y x ′ == y ′

Numerics, booleans, objects
Strings strcmp(x ′, y ′) == 0
Ordered sets equalsSet((void ∗ ∗) x ′, (void ∗ ∗) y ′)
Sequences equalsSequence((void ∗ ∗) x ′, (void ∗ ∗) y ′)

x < y x ′ < y ′

numerics
Strings strcmp(x ′, y ′) < 0

Table 6. Mapping specifications for comparator expressions

Expression e C translation e’

x->size() oclSize((void**) x’)
x->reverse() reverseE(x’)
x->sort() (struct E**) oclSort((void**) x’, compareTo E)

x of entity element type E
(char**) oclSort((void**) x’, compareTo String)
x of String element type

x->sum() sumString(x’,n), sumint(x’,n), sumlong(x’,n), sumdouble(x’,n)
n is the size of x

x->max() maxint(x’,n), maxlong(x’,n),
maxdouble(x’,n), or maxString(x’,n)
n is the size of x.

Table 7. Translation of collection unary operators

Expression e C translation e’

s->including(x) insertE(s’,x’) or appendE(s’,x’)
s->excluding(x) removeE(s’,x’)
s - t removeAllE(s’,t’)
s->append(x) appendE(s’,x’)
s->count(x) oclCount((void**) s’, (void*) x’)
s->at(i) (struct E*) (s’)[i’-1]
s->indexOf(x) oclIndexOf((void**) s’, (void*) x’)
s->union(t) unionE(s’,t’)
s->intersection(t) intersectionE(s’, t’)
s->sortedBy(e) (struct E**) oclSort((void**) s’, comparee)

comparee defines e-order on E objects
Table 8. Translation of binary collection operators (s of entity element type E)

OCL expression e C translation e’

s->select(P) selectE(s’, fP)
where E is entity element type of s, fP evaluates P’:
unsigned char fP(struct E* self) { return P’; }

s->select(x | P) as above, fP is:
unsigned char fP(struct E* x) { return P’; }

s->collect(e) collectE et(s’, fe)
e of primitive type et fe evaluates e’
s->collect(x | e) (et’*) collectE(s’, fe)
Non-primitive type et as above

Table 9. Mapping of selection and collection expressions

Unlike the types and class diagram mappings, a recursive functional style of
specification is needed for the expressions mapping (and for activities). This is
because the subordinate parts of an expression are themselves expressions. For
each category of expression, the mapping is decomposed into cases, for example:

BasicExpression::

query mapBasicExpression(ob : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CExpression

pre:

ob = CExpression[objectRef.expId] &

aind = CExpression[arrayIndex.expId] &

pars = CExpression[parameters.expId]

post:

(umlKind = value =>

result = mapValueExpression(ob,aind,pars)) &

(umlKind = variable =>

result = mapVariableExpression(ob,aind,pars)) &

(umlKind = attribute =>

result = mapAttributeExpression(ob,aind,pars)) &

(umlKind = role =>

result = mapRoleExpression(ob,aind,pars)) &

(umlKind = operation =>

result = mapOperationExpression(ob,aind,pars)) &

(umlKind = classid =>

result = mapClassExpression(ob,aind,pars)) &

(umlKind = function =>

result = mapFunctionExpression(ob,aind,pars))

The operation precondition of mapBasicExpression asserts that the parameters
correspond to the sub-parts of the basic expression. The kind attribute records
the origin of the C expression. This enables an inverse operation to be defined.
The operations can be inverted clause-by-clause. This is possible since the target
expression encodes all necessary information to derive the source expression. For

example, an assignment c.parameters = Sequence{s} a pars inverts to pars =
c.parameters.tail & s = c.parameters.first .

The mapping transformation consists of 92 operations and 33 transformation
rules. The expression mapping is then further used by the mappings of UML
activities and use cases to C code.

The efficiency of the expression translator has been tested on a range of
UML/OCL models (Table 10).

The semantic correctness of the mapping was checked by reasoning induc-
tively on expression structure that SemC (e ′) is equivalent to SemOCL(e) for
OCL expressions e, if e ′ = CExpression[e.expId], where SemC is a mathemat-
ical semantics for C programs, and SemOCL is the UML-RSDS semantics for
expressions, defined by a mapping from OCL to the B AMN formalism [6]. We
assume that malloc and calloc always succeed, and that equivalent numeric types
are used in the specification and implementation.

#classes #attributes per class Execution time

10 10 90ms
10 50 170ms
50 50 591ms
50 100 881ms
100 100 1.7s

Table 10. Execution times for OCL to C transformation

4 Evaluation

In this section we evaluate the effectiveness of the translation approach. The
Visual Studio (2012) and lcc2 (2016) C compilers were used to evaluate the
generated C code. All tests were carried out on a standard Windows 7 laptop
with Intel i3 2.53GHz processor using 25% of processing capacity.

In order to test the efficiency and compactness of generated code, we consid-
ered different UML specifications with different computational characteristics.
The first was a small-scale application involving a fixed-point computation of the
maximum-value node in a graph of nodes. This application has one entity type
A, with an attribute x : int and a self-association neighbours : A → Sequence(A).
There is a use case maxnode with the postcondition

A::

n : neighbours & n.x > x@pre => x = n.x

This updates a node to have the maximum x value of its neighbours. Because
this constraint reads and writes A :: x , a fixed-point design is generated by the
UML-RSDS tools. It is an example of object-oriented specification with intensive
use of navigation from object to object.

The generated C code of the use case and its auxiliary functions is:

void maxnode1(struct A* self, struct A* n)

{ setA_x(self, getA_x(n)); }

unsigned char maxnode1test(struct A* self, struct A* n)

{ if (getA_x(n) > getA_x(self))

{ return TRUE; }

return FALSE;

}

unsigned char maxnode1search(void)

{ int ind_boundedloopstatement_80 = 0;

int size_boundedloopstatement_80 = oclSize((void**) a_instances);

for (; ind_boundedloopstatement_80 < size_boundedloopstatement_80;

ind_boundedloopstatement_80++)

{ struct A* ax = (a_instances)[ind_boundedloopstatement_80];

int ind_boundedloopstatement_85 = 0;

2 www.cs.virginia.edu/∼lcc-win32

int size_boundedloopstatement_85 = oclSize((void**) getA_neighbours(ax));

for (; ind_boundedloopstatement_85 < size_boundedloopstatement_85;

ind_boundedloopstatement_85++)

{ struct A* n = (getA_neighbours(ax))[ind_boundedloopstatement_85];

if (maxnode1test((struct A*) ax, n))

{ maxnode1((struct A*) ax, n);

return TRUE;

}

}

}

return FALSE;

}

void maxnode(void)

{ unsigned char maxnode1_running = TRUE;

while (maxnode1_running)

{ maxnode1_running = maxnode1search(); }

}

Table 11 compares the code size (for the complete applications, including
OCL library code) and the efficiency of the C code with the Java code produced
by the UML-RSDS Java code generator. These show that code size is halved by
using C, and that efficiency is improved.

C version Java version

Code size 17Kb 35Kb

Execution time
A.size = 20 0 30ms
A.size = 50 15ms 70ms
A.size = 100 240ms 330ms
A.size = 200 1750ms 2500ms

Table 11. Generated C code versus Java code, case 1

In a second case, the efficiency test from [5] was used. This computes prime
numbers in a given range using a double iteration. Table 12 compares the gen-
erated code in Java, C, C# and C++ on this case. In this purely numerical
example, C is significantly more efficient than the alternative implementations
for larger cases.

The main causes of inefficiency in generated C code are (i) repeated lin-
ear traversals of collections to calculate the sizes of collections; (ii) the cost of
allocating and reallocating large contiguous blocks of memory for array-based
collections. An alternative array collection representation could use the first el-
ement of an array to store the collection length. This also has the advantage
that C and OCL indexing of collections would coincide. However it would hin-
der the compatibility of the generated code with standard C code. For sets and

Testing primes up to C version Java version C# version C++ version

10000 5ms 7ms 3ms 8ms
20000 9ms 15ms 8ms 16ms
50000 22ms 47ms 27ms 31ms
100000 47ms 63ms 54ms 62ms
200000 109ms 125ms 274ms 112ms
500000 143ms 374ms 472ms 405ms

Table 12. Generated C code versus Java, C#, C++ code, case 2

bags non-contiguous memory blocks can be used, and this reduces the memory
allocation costs.

We also compared the C and Java implementations using the OCL bench-
marks of [1]. Table 13 shows the execution time for adding n elements to a
collection, using →including .

n Sequence OrderedSet Bag Set Java Sequence Java OrderedSet

4000 65ms 150ms 16ms 26ms 4ms 180ms
8000 220ms 486ms 47ms 49ms 5ms 720ms
16000 660ms 895ms 99ms 101ms 10ms 2.5s
32000 2.1s 8.9s 202ms 231ms 10ms 10s

Table 13. C and Java efficiency results for →including

Table 14 shows the execution time for testing the membership of 2000 ele-
ments in a collection of size n, using →includes.

n Sequence/OrderedSet Bag/Set Java Sequence/OrderedSet

1000 8ms 5ms 46ms
2000 21ms 10ms 62ms
4000 46ms 11ms 140ms
8000 67ms 12ms 312ms
16000 109ms 12ms 710ms
32000 169ms 16ms 1.4s

Table 14. C/Java efficiency results for →includes

There are the following restrictions on the UML-RSDS input specification for
UML2C: (i) no overloading of operation names within a class; (ii) quantifiers,
collect, select/reject predicates can only depend on one context object; (iii) no
static attributes; (iv) collection values and types can only be nested to 2 levels
(collections of collections of non-collection types); (v) use cases cannot have
input parameters; (vi) root classes must contain at least one property, and only

single inheritance is represented; (vii) there are no interfaces, association classes
or qualified associations.

Restrictions (iii) and (v) will be removed in release 1.8 of UML-RSDS.

5 Related work

Code generation from UML to ANSI C is an unusual topic, with only one recent
publication describing such a translator [3]. This code generator is described in
a high-level manner, and it is not clear how OCL expressions or UML activities
are mapped to C using the transformation. In contrast, we have implemented
mappings for all elements of a substantial subset of UML, including a large subset
of OCL. Formal specification approaches for MT are described in [10] and [2].
The constructive logic approach of [10] does not appear to have been applied to
large scale transformations. The approach of [2] is focussed on the specification
of architectural choices. Our approach enables large-scale transformations to be
specified using OCL, with their implementations being verified as correct-by-
construction.

A Java VM is the usual target for OCL execution [11]. Compared to [11]
we consider a subset of OCL which (i) omits OclAny, null and invalid values,
(ii) uses classical logic, (iii) uses computational numeric types. These modifica-
tions make the correspondence between a (UML-RSDS) OCL specification and
a Java/C#/C++/C implementation more direct and also simplify specification
verification, eg., using the B formal method or other classical logic theorem
prover.

The code generator specification can be used as the basis of alternative
C translators. In particular, there is interest in mapping to the high-integrity
MISRA C subset [7]. For this subset, dynamic memory allocation is not permit-
ted, so for each class, a maximum bound must be provided for the number of
objects of the class.

6 Conclusions

The UML to C translator is the largest transformation which has been devel-
oped using UML-RSDS, in terms of the number of rules (of the order of 250
OCL rules/operations in 5 subtransformations). The translator provides effi-
cient implementation of OCL using a direct translation approach which supports
traceability and bidirectionality. The translator has been incorporated into the
UML-RSDS tools version 1.7 at nms.kcl.ac.uk/kevin.lano/uml2web. UML-RSDS
specifications are type-checked and converted to designs prior to export for code
generation. The translator is itself defined using UML class diagrams and the
UML-RSDS subset of OCL, demonstrating that purely declarative OCL specifi-
cations can be sufficient for large and complex applications: no activities or other
procedural elements were needed in the specification. We found substantial ben-
efits in reduced development time and improved correctness and flexibility com-
pared to the manually-coded translators for Java, C# and C++. The UML2C

OCL code is less than 25% of the size of the Java code of the manually-coded
C++ translator, and required half the development effort.

References

1. J. Cuadrado, F. Jouault, J. Molina, J. Bezivin, Deriving OCL optimisation patterns
from benchmarks, OCL 2008.

2. A. Dieumegard, A. Toon, M. Pantel, Model-based formal specification of a DSL
library for a qualified code generator, OCL 2012.

3. M. Funk, A. Nysen, H. Lichter, From UML to ANSI-C: an Eclipse-based code
generation framework, RWTH, 2007.

4. B. Kernighan, D. Ritchie, The C Programming Language, Prentice Hall, 1988.
5. M. Kuhlmann, L. Hamann, M. Gogolla, F. Buttner, A benchmark for OCL engine

accuracy, determinateness and efficiency, SoSyM vol. 11, 2012.
6. K. Lano, Agile Model-based Development using UML-RSDS, Taylor and Francis,

2016.
7. MIRA Ltd., MISRA-C:2004 Guidelines for the use of the C language in critical

systems, 2004.
8. OMG, OCL Version 2.4, 2014.
9. OMG, Semantics of a Foundational Subset for Executable UML Models (FUML),

v1.1, 2015.
10. S. Zschaler, I. Poernomo, J. Terrell, Towards using constructive type theory for

verifable modular transformations, FREECO’ 11.
11. E. Willink, An extensible OCL virtual machine and code generator, OCL ’12, 2012.

