
October 2, 2016 OCL Workshop, Saint-Malo, France 1

Efficient OCL-based Incremental
Transformations

Frédéric Jouault and Olivier Beaudoux
Groupe ESEO, Angers, France
firstname.lastname@eseo.fr

October 2, 2016 OCL Workshop, Saint-Malo, France 2

Introduction

● At OCL 2015 in Ottawa, we presented how
active operations can incrementally evaluate
OCL expressions
– An atomic change in the queried model is

propagated into changes to the values of the
expressions that use the changed part

● At OCL 2016 in Saint-Malo, we show that this
can be done efficiently, and in a scalable way
– On a model transformation benchmark

October 2, 2016 OCL Workshop, Saint-Malo, France 3

CPS to Deployment Benchmark

● Originally a Viatra demonstrator
– Overview

– Domains
● CyberPhysicalSystems & Deployment metamodels

– Comes with some transformation correctness JUnit tests

● Extended into a benchmark
– Source model generator

– Performance tests, also JUnit-based

– Multiple implementations (e.g., batch, IncQuery, Viatra)

file:///home/ubuntu/T%C3%A9l%C3%A9chargements/viatra-docs_Home.adoc%20at%20master%20%C2%B7%20viatra_viatra-docs%20%C2%B7%20GitHub.html
file:///home/ubuntu/T%C3%A9l%C3%A9chargements/viatra-docs_Domains.adoc%20at%20master%20%C2%B7%20viatra_viatra-docs%20%C2%B7%20GitHub.html

October 2, 2016 OCL Workshop, Saint-Malo, France 4

Active Operations Framework (AOF)

● Active operations enable incremental execution of OCL-like
expressions
– Bidirectionality is also possible with some limitations, but the CPS to

Deployment benchmark does not evaluate this

● Every mutable value is represented as an observable box
– Either a root box corresponding to a model element property value

– Or a derived box computed from other boxes using a sequence of
active operations (e.g., select, collect)

– Box types: Set, OrderedSet, Bag, Sequence, One, or Option

● Every active operation provides initial computation plus fine-
grained propagation algorithms

October 2, 2016 OCL Workshop, Saint-Malo, France 5

AOF Benchmark Implementation

● Source model traversal strategy
– This transformation can be implemented with explicit rule call (no

pattern matching)

– It corresponds to what one would write in ATL using
● one regular matched rule for the root element
● unique lazy rules in all other cases

– This is more efficient than implicit rule call, so we chose this

● Syntax: we used xtend
– Which enables much more concise syntax than Java (even Java 8

with lambdas)

– By leveraging extension methods

October 2, 2016 OCL Workshop, Saint-Malo, France 6

Syntax Example

● Embedded DSL in Xtend
target._ip <=> source._nodeIp

target._applications <=>

 source._applications.collectTo(

 applicationInstance2DeploymentApplication

)

● All _<property-name> are actually extension methods

● <=> is the spaceship operator overloaded to behave as a
binding on boxes

October 2, 2016 OCL Workshop, Saint-Malo, France 7

Execution Time: Publish-Subscribe

October 2, 2016 OCL Workshop, Saint-Malo, France 8

Memory Usage: Publish-Subscribe

October 2, 2016 OCL Workshop, Saint-Malo, France 9

Required Optimizations 1/3

● AOF optimizations
– Conversion of expensive sanity checks into asserts

● They would not have been triggered any way because of the way
we use AOF when writing a transformation

● These asserts can be enabled for debugging

– Local optimizations on some propagation algorithms,
notably in asSet() and asOrderedSet()

● These issues had not been detected earlier because
of the lack of a performance benchmark

● Early development focused mostly on correctness

October 2, 2016 OCL Workshop, Saint-Malo, France 10

Required Optimizations 2/3
● Removal of duplicate boxes creation

– Duplicate boxes = created from the same property box by the same sequence of
operations, with the same arguments

● Solution: caching the creation of boxes wrt. source box, operation, and its
arguments

● However, some operation arguments are lambdas, which are not
comparable in Java by default
– Therefore, we had to write the transformation with explicit calls to caches

– This will no longer be an issue once we have a fully functional OCL front-end
● The interpreter or compiler can take care of specifying appropriate hashCode() and equals()

● This issue had also not been detected earlier because of the lack of a
performance benchmark

● We implemented a duplicate box analyzer, which can point to such issues
by analyzing the expressions structure (easier to use than a Java profiler)

October 2, 2016 OCL Workshop, Saint-Malo, France 11

Required Optimizations 3/3.1/2
● Specific operation: groupBy
let keys : Set(OclAny) =

 myCollection.collect(e | getKey(e))−>asSet() in

keys−>collect(key |

 Tuple {key = key, elements =

 myCollection−>select(e | getKey(e) = key)})

Naive execution is quadratic.

We implemented an optimized active groupBy
operation
myCollection.groupBy(getKey)

October 2, 2016 OCL Workshop, Saint-Malo, France 12

Required Optimizations 3/3.2/2
● Specific operation: selectBy
myCollection.select(e | selector(e) = someMutableValue)

This requires the creation of a large number of
mutable booleans to represent the result of the
equality check

We rewrote it into:
myCollection.selectBy(selector, someMutableValue)

By implementing an optimized active selectBy
operation

Ideally, these kinds of rewrites should be automated

October 2, 2016 OCL Workshop, Saint-Malo, France 13

More Optimization Perspectives
● Optimizing parts of AOF not used in this specific benchmark

– We need more benchmarks

● Reducing memory usage by not storing intermediate data
that can be recomputed
– A time-memory trade-off

● Giving all cache control to the user
– Would not be more complex to use, but would save bookkeeping

and memory

● Relaxing order preservation on Sets and Bags
● Parallel execution?

– AOF has some similarities with Java 8 streams

October 2, 2016 OCL Workshop, Saint-Malo, France 14

Advantages of Active Operations
over Viatra

● Collection ordering preservation
– RETE-based Viatra does not preserve ordering

– AOF always preserves it (even for Sets and Bags)

– Execution, and result order is therefore deterministic

● Broader OCL compatibility
– AOF is based on OCL operations

– Only part of OCL can be translated into Viatra patterns

● AOF has some bidirectional propagation capabilities, while
Viatra does not
– But this is not necessary here

October 2, 2016 OCL Workshop, Saint-Malo, France 15

Drawbacks of Active Operations
Compared to Viatra

● Require the transformation to be expressed in
an OCL-like manner
– Remark: this was also an advantage, but

unfortunately, this may be seen as an inconvenient
by some

● No pattern matching
– As available in Viatra for instance

● No global optimization

October 2, 2016 OCL Workshop, Saint-Malo, France 16

Conclusion
● Active operations are as scalable as state-of-the-art Viatra
● This is only measurable thanks to the Viatra benchmark

– Actually only achievable thanks to that benchmark

● But benchmark creation is expensive
● There is a real need for a benchmarking framework

– For incremental (and/or bidirectional) engines

– Adaptable to different transformations
● To reuse parts of the framework (e.g., model generators)

– From Ed Willink’s paper at BigMDE 2016 we infer that his work on
QVT would also benefit from this

– This is also a need of the BX (bidirectional transformation) community
● With additional requirements (e.g., not EMF specific, Haskell-compatible)

October 2, 2016 OCL Workshop, Saint-Malo, France 17

Thanks for your attention!

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

