
Modeling and Reasoning with Multirelations,
and their encoding in Alloy

Peiyuan Sun, Zinovy Diskin, Michał Antkiewicz, and Krzysztof Czarnecki

University of Waterloo

1



Relations

• Relation is a fundamental concept in modeling languges

• Association in UML and OCL
• Unary/Binary/Ternary relation in Alloy

• Relation is usually refered to ordinary relation, where objects
can be related no more than once.

• Multirelation naturally arises in domain modeling, where
objects can be related multiple times.

2



Motivation

3



A seasonal sale scenario

4

The manager of a grocery store asks employee to prepare some bun-
dles for the coming seasonal sale. A bundle contains several food items,
and each item belongs to a certain product category.

Bundle

B1

B2

Item Category

contains belongsTo

Bakery

Dairy

Bread

Butter

Milk



Rules on bundling

The manager also imposes some rules on the bundle content:

1. Every bundle must contain at least two dairy products.
2. Every bundle must contain items from at least two product

categories.

Rules can be applied in two ways:

• Validation: check if an existing bundle setting is valid.
• Synthesis: generate valid bundle settings from the rules.

5



A bundling instance

6

Bundle

B1

B2

Item Category

contains belongsTo

c3

c4

b1

b2

b3

c2

c12

c11

Bakery

Dairy

Bread

Butter

Milk

• The objects in Bundle and Item should be able to be
related more than once, which forms a multirelation.

• In order to observe how many dairy products in each
bundle, composing relations contains and belongsTo

should result in a multirelation (perserving multiplicity).



Work with multiconcepts

To work with multiconcepts(multiset/bag and multirelation), we need:

• Directly declare a multirelation.
• Operations over multiconcepts such as composition.
• Can control the result of an operation to be multi or not.

Most modeling languages do not have a first-class support on multicon-
cepts, so there is no direct way to work with multiconcepts and often
encoding is needed. We would like to develop a general solution for
encoding multiconcepts.

7



Formalization

8



Before reification

9

Bundle

B1

B2

Item

contains

c3

c4

c2

c12

c11
Bread

Butter

Milk

The basic idea of the formalization is to reify links as objects.



After reification

10

Bundle

B1

B2

Item

Bread

Butter

Milk

Contains
c11

c12

c2

c3

c4

slegContains tlegContains

By reification, an index set Contains is introduced, in which the elements
represent links, along with two total functions (source leg and target leg)
pointing to the domain and range of the original multirelation. The whole
shape is called a span.



Full bundling model after reification

iResult

r1

r2

r3

r4

r5

Result

Bundle

B1

B2

Category

Bakery

Dairy

Item

Bread

Butter

Milk

Contains
c11

c12

c2

c3

c4

BelongsTo

b1

b2

b3

11



Composition

iResult

r1

r2

r3

r4

r5

Result

Bundle

B1

B2

Category

Bakery

Dairy

Item

Bread

Butter

Milk

Contains
c11

c12

c2

c3

c4

BelongsTo

b1

b2

b3

12



Formalization

13

A mathematical framework based
on category theory, including con-
cepts:

• Family: t1

• Span: (Contains, s1, t1)

• Pullback: (Result, p1, p2)

• Family/Span Composition

Bundle

Contains
t1 //

s1

OO

Item

Result

p1

OO

p2
//

s

BB

t

44
BelongsTo

s2

OO

t2
// Category

Diagram of span composition



A Multiconcept Library in Alloy

14



Features

• Use multiconcepts in demand without changing existing model.
• Declarative style to use multiset and multirelation with
parametric module.

• Operations over multiconcepts:

• composition
• multiplicity/cardinality
• max-union, min-intersection, merge
• domain restriction, range restriction, inverse
• lift, drop
• traditional transitive closure is not implemented since it leads to
infinity multiplicity in certain cases.

• Theme settings which provides human-readable visualization of
instances.

15



Declare a multirelation

Example

open mrel[Bundle, Item] as Contain
open mrel[Item, Category] as BelongsTo
open mrel[Bundle, Catgory] as Result

• Open the module mrel with source and target type parameters
to declare a multirelation, assign a name for future reference.

16



Compose multirelations

Example

fact {
BelongsTo/liftedFrom[belongsTo]
Result/composedFrom[Contain/get, BelongsTo/get]

}

• We could lift a ordinary binary relation to a multirelation
representation.

• To perform a composition, a new mrel need to be declared to
hold the result.

17



Specify bundling rules

Example

fact {
all b : Bundle | #(b <: Result/get :> Dairy) >= 2
all b : Bundle | #(b <: (drop[Result/get])) >= 2

}

• More importantly, We can express the bundling rules in the
model.

18



Visualize in Alloy Analyzer

19



Conclusion

20



Contribution

• A category-theory based multiconcepts framework as a
theoretical contribution to the area of MDE.

• An Alloy multiconcept library which enable the Alloy user to
easily integrate multiconcepts into the model as a contribution
to Alloy community.

• Available in Github OCL repository:
https://github.com/jcabot/ocl-repository

21



Future work

• Numeric-based multiconcepts encoding in Alloy.
• A multiconcepts implementation for SMT Solver where sets and
total functions are available.

• Modeling language with first-class multiconcepts support, such
as Clafer.

22



Questions?

22


	Motivation
	Formalization
	A Multiconcept Library in Alloy
	Conclusion

