
A Comparison of Textual Modeling Languages:

OCL, Alloy, FOML

Mira Balaban1, Phillipa Bennett2, Khanh Hoang Doan3, Geri

Georg2, Martin Gogolla3, Igal Khitron1, Michael Kifer4

1. Computer Science Department, Ben-Gurion University of the Negev

2. Computer Science Department, Colorado State University

3. Department for Mathematics and Computer Science, University of

Bremen

4. Department of Computer Science, Stony Brook University

OCL WORKSHOP 2016

3

Textual languages are used in model-driven

engineering for wide range of purposes.

OCL, Alloy, and FOML are three popular textual

languages.

Our objectives?

 Showing a comparison between three languages on

major modeling criteria.

 Discussing the similarities and differences among the

languages.

 Helping one in choosing a suitable textual language for

modeling.

Introduction

4

Mode of usage and problems being solved

 Constraining a model.

 Querying and analysis.

 Checking satisfiability of constraints.

 Multiple levels of modeling.

Representation aspects

 Navigation through the elements of the models.

 Supporting for collections.

 Recursion.

 Subtyping/instantiation.

Criteria for comparison

5

Navigation

 Using role names from associations or object-valued

attributes

context p: Person

p.parent

Collections

 Support four collection kinds: sets, bags, sequences and

ordered sets.

 Number of collection operations: isEmpty, size, select,

collect, union, intersection, . . .

 Recursion: use transitive closure functionality

p.parent ->closure(parent)

Modeling with OCL

6

Formulating constraint with OCL

 Formulate at class level

 Its semantics is applied on the level of objects.

 Three types of constraints: invariant, postcondition and

precondition.

context p:Person inv acyclicParenthood:

p.parent->closure(parent)->excludes(p)

Checking satisfiability of constraints

 Tool support (e.g., tool USE)

Modeling with OCL (con)

7

Similarities

 The center of both languages is set and collection.

 Using transitive closure functionality for recursion.

 Formulating constraint quite similar not much effort for

translate constraints between.

Differences

 Alloy navigates through relation names, OCL navigates

through association end names.

 OCL supports n-ary associations and navigation through

them, which cannot be done in Alloy.

 One can define and use predicate in Alloy, which is not

directly support in OCL.

OCL vs Alloy

8

Similarities

 Most of the language features of FOML are

supported in OCL.

 Navigate through association-end names (role names).

 Support composite associations (n-ary associations)

 Support closure functionality.

Differences

 Main difference between the two modeling languages is

the multilevel modeling support.

 FOML supports three-layer specification: data, model,

and meta-model. Current OCL version only supports two

level

OCL vs FOML

9

Modeling with Alloy

Modeling with Alloy

February 201612

13

Modeling with FOML

Modeling with FOML

FOML – Feature Summary

• Expressive rule logic language

– Extensional (data-based) & intensional (inference-based)

– Executable

– Extendable

• Services:

– Modeling: Textual model specification

– Constraints (model extension)

– Ad-hoc (on the fly) querying & inference

– Validation, testing

– Metamodeling, model analysis

– Multilevel modeling

14 October 2016

Modeling – Industry Motivation

15 October 2016

16

• Metamodeling:
• User:Class;

• grantorR.prop(grantor,1,1)[User];

• Data: mary.granted[t1].table_perms[p1].grantee[mary];

• Query (on the fly):

Find grantor-grantee-permission triplets (?u, ?v, ?p) to tables whose

domain is “teaching“:

?- ?u:User, ?u.grantor_perms[?p].grantee[?v], ?p.table.domain["teaching"];

October 2016

17 October 2016

Intensional:

– mary.compose(granted, table_perms, grantee)[mary];

– compose(granted, table_perms, grantee).circular[true];

– ?p.circular[true] :- ?o.closure(?p)[?o];

– !- ?p.circular[true], not ?o. closure(?p)[?o];

– For a table ?t, the composition of grantor_perms and grantee is not circular

?u.grantor_grantee(?t)[?v] :- ?u.compose_via_obj(grantor_perms, ?p, grantee)[?v], ?p.table[?t];

!- ?t:Table, grantor_grantee(?t).circular[true];

Intensional (defined) property

An inference rule

A constraint definition of circular

Intensional parameterized
property

18

• Association class constraint on Permission, user_tableR, grantee, table:

• A user ?u that is a grantee in a permission to a table ?t , is granted access to ?t

?u.granted[?t] :- ?u.grantee_perms.table[?t];

• Every pair of a granted user ?u to a table ?t has a corresponding permission:

!- ?u.granted[?t], not ?u.grantee_perms.table[?t];

• For every grantee user ?u to a table, there is a single corresponding permission:

!- ?u.grantee_perms[?p1].table[?u.grantee_perms[?p2].table], ?p1!=?p2;

• Challenge:

Express the association class constraint in the other languages!

rule (9) in paper

October 2016

constraint (13) in paper

constraint (14)

20

Representation

Comparison Summary

Navigation Recursion Subtyping Instance
creation &
completion

OCL Individual & Collection;
intermediate filtering;
follows
associations and
derived associations

Transitive
closure

Yes Yes

Alloy Individual; follows
associations and
virtual relations

Transitive
closure

Yes Yes

FOML Individual;
intermediate filtering;
follows associations
and virtual relations;
wildcard navigation

User-
defined
recursion
(includes
transitive
closure)

Yes No

21

Usage

Comparison Summary

Textual
modeling

Querying Inference Validation Multilevel
Modeling

OCL Yes Yes Via tools Yes No

Alloy Yes Yes No Yes No

FOML Yes Yes Yes via
constraints

Yes

22

We present a comparison between modeling

languages on the basis of their mode of usage and

representation aspects.

The similarities, differences, strengths and

weaknesses are showed.

The representation aspects of the languages have a lot

of similarities.

The mode of use of Alloy and OCL is closely related,

whereas FOML is quite different (e.g. multi level

modeling)

Conclusion

23

Thanks for your
attention!

