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Motivation - General

 Automotive software has a dramatically increased number of 

software components

• Example: Emissions control systems

• They have complex systems with different HW / SW components

• Various tools are used inside a development toolchain

 Vehicles will be continually improved

• Existence of evolution and variants of function components

• As well as large and complex product line families

 Safety of software components is very important in many

areas (esp. automotive / aerospace / railway industry)

• Safety-relevant software in the sense of ISO 26262

• Automotive Safety Integrity Level (ASIL) classification
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Motivation - Example

MA

ECU_V1

pressure 
sensor value

oxygen
sensor value

speed sensor 
value ([0…250]) urea amount

«turn off urea amount

if speed sensor > 135»

MA

«turn off urea amount

if speed sensor > 125»
changed
constraint

ECU_V2

Automotive Emission Control System (simplified)

A developer team member is unsure if the 
new version can be used in the US and in Germany. 

Varying regulations in different countries:

In Germany the emission control can be turned off if the speed is greater 120 km/h, 

whereas in the US it can be turned off if speed is greater 128 km/h.
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Structural Compatibility

 Component compatibility: Structural compatibility serves as a first 

indicator as it is an important prerequisite for full compatibility, which 

would also enclose behavioral compatibility.

 Compatibility of different versions and variants for function 

components

• V2 + V1: V2 is backward compatible, V2 can replace V1.

• V2 – V1: V2 is forward compatible, V2 can be replaced by V1.

• V2 0 V1: V2 is full compatible to V1, both components can 

replace each other (have exactly the same behavior)
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Requirements from Industry1

(1) Compatibility constraints should be defined in comprehensive and 

concise notation

(2) Method should support heterogeneous C&C architecture models

(3) Developers should be able to modify structural compatibility 

constraints at runtime

(4) Meaningful and model related error messages for engineers

(5) Genuine C&C model files should not be modified

(6) Compatibility checking should be easy for engineers

1http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html
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Extendable Tool Chain - Overview
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Syntax example of Z3 and OCL/P

A more complex example, comparing two 

ADAS, and showing how generated SMT 

code actually looks like is online available.

http://rise4fun.com/Z3/2AsLg

1(define-fun IsIn_Number_Range((v Number) (r Range)) Bool

2 (and (GreaterThen_Number_Number v (minimum r)) 

3 (LessThen_Number_Number v (maximum r)) 

4 (or (not (resDefined r))

5 (Equals_Number_Number

6 (Mod_Number_Number (Minus_Number_Number v (minimum r))

7 (resolution r))

8 (mk-number 0) ))))

Z3

OCL/P has a better understandable mathematical infix notation, while Z3

uses a parenthesized prefix notation which is not easy to read and write.

1def boolean infix (Number v) in (Range r) is:

2 result = v >= r.min && v <= r.max &&

3 (~r.res || (v - range.min) % range.res == 0)

OCL/P
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Simulation (Preorder) Algorithm

1; meta-model definition

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (target (List Name)) (id ID)))))

4; instance creation

5(mk-connector (insert n_switch1 (insert n_out1 nil))

6 (insert n_mul (insert n_in2 nil)) id_1593458942)

Z3 …

1(define-fun getConnectorSourceFromId ((id Int)) (List Int)

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (ite (= id 2) (insert 2 (insert 56 nil))

4 (ite (= id 14) (insert 0 (insert 56 nil))

Z3 …

Z3 code used in first version (top) and last version (bottom)

Impact of generated SMT code on Z3’s execution time (A = 126 / B = 96)
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Counter Example as Simulink Model

type of incompatibility

provided counterexample

Engineer Fronted

violated constraint

backward compatibility

of ECU V2 to ECU V1

as no counterexample for
EU::EmissionCOntrol is provided
this constraint is not violated
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Conclusion

 Updates of software components are very unpredictable due to 

• different versions

• variants

• and configuration options

 Presentation of a highly adaptable infrastructure to check 

compatibility constraints

• based on a generic meta-model and employs OCL at runtime

• customizability is achieved via plug-in points

• different views for developer and engineer are given inside the 

presented toolchain

• since all transformations are dynamically executed during the 

checking process, redefinitions and extensions of compatibility 

definitions and compatibility variations (e.g. for local markets) are 

supported
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(1) Compatibility constraints should be defined in comprehensive and 

concise notation

• Usage of OCL/P instead of plain solver code as it is easer to 

read and understand

• Feasible, not too formal for the developer

• Introduction of two user types (engineer and developer)

(2) Method should support heterogeneous C&C architecture models

• Plug-in structure for use of different modelling languages and

solvers

• Trough own meta-model and plugin structure it is usable for 

further modeling languages as the meta-model is based on an 

intensive analysis of well established modeling languages.

Conclusion (Requirements from Industry)
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(3) Developers should be able to modify structural compatibility 

constraints at runtime

• OCL constraints can be added dynamically

• 63 constraints have been identified

(4) Meaningful and model related error messages for engineers

• Textual / graphical results instead of sat / unsat

• Constructs counter-example if not similar

(5) Genuine C&C model files should not be modified

• New m-files are generated instead of changing the original ones.

• Textual results presented in individual files

Conclusion (Requirements from Industry)
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Thank you for your attention.


