
OCL @ MODELS 2016

Extendable Toolchain for Automatic

Compatibility Checks

Vincent Bertram, Alexander Roth, Bernhard Rumpe,

Michael von Wenckstern

Software Engineering

RWTH Aachen

http://www.se-rwth.de/

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 2

Outline

Compatibility and Industrial Requirements2.

Introduction Extendable Toolchain3.

Conclusion4.

Motivation and Example1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 3

Motivation - General

 Automotive software has a dramatically increased number of

software components

• Example: Emissions control systems

• They have complex systems with different HW / SW components

• Various tools are used inside a development toolchain

 Vehicles will be continually improved

• Existence of evolution and variants of function components

• As well as large and complex product line families

 Safety of software components is very important in many

areas (esp. automotive / aerospace / railway industry)

• Safety-relevant software in the sense of ISO 26262

• Automotive Safety Integrity Level (ASIL) classification

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 4

Motivation - Example

MA

ECU_V1

pressure
sensor value

oxygen
sensor value

speed sensor
value ([0…250]) urea amount

«turn off urea amount

if speed sensor > 135»

MA

«turn off urea amount

if speed sensor > 125»
changed
constraint

ECU_V2

Automotive Emission Control System (simplified)

A developer team member is unsure if the
new version can be used in the US and in Germany.

Varying regulations in different countries:

In Germany the emission control can be turned off if the speed is greater 120 km/h,

whereas in the US it can be turned off if speed is greater 128 km/h.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 5

Outline

Compatibility and Industrial Requirements2.

Introduction Extendable Toolchain3.

Conclusion4.

Motivation and Example1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 6

Structural Compatibility

 Component compatibility: Structural compatibility serves as a first

indicator as it is an important prerequisite for full compatibility, which

would also enclose behavioral compatibility.

 Compatibility of different versions and variants for function

components

• V2 + V1: V2 is backward compatible, V2 can replace V1.

• V2 – V1: V2 is forward compatible, V2 can be replaced by V1.

• V2 0 V1: V2 is full compatible to V1, both components can

replace each other (have exactly the same behavior)

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 7

Requirements from Industry1

(1) Compatibility constraints should be defined in comprehensive and

concise notation

(2) Method should support heterogeneous C&C architecture models

(3) Developers should be able to modify structural compatibility

constraints at runtime

(4) Meaningful and model related error messages for engineers

(5) Genuine C&C model files should not be modified

(6) Compatibility checking should be easy for engineers

1http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 8

Outline

Compatibility and Industrial Requirements2.

Introduction Extendable Toolchain3.

Conclusion4.

Motivation and Example1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 9

Extendable Tool Chain - Overview

V1.slx

V2.slx

metamodel.cd

V1.od

V2.od

«instantiation»

«consistent»

metamodel.smt2

compatibility.smt2

V1.smt2

V2.smt2

errorClass1.oclerrorClassN.ocl errorClass1.smt2

«uses»

errorClassN.smt2

compatibility.ocl

counterExample1.od

counterExample.slx errorMessage1.txt

counterExample1.m

Developer Frontend Solver BackendEngineer Frontend

➀

➀

➁

➂

➂

④

④

➄

➄

➄

➄

➄

➅
➆

➇

➈

➉
counterExampleN.od answer.smt2

errorMessageN.txt

counterExampleN.m

Engineer

Developer

Role:

q
u
e
ry

.s
m

t2

plug-in points using the toolchain

extending the toolchain
dynamic support for different modeling languages

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 10

Syntax example of Z3 and OCL/P

A more complex example, comparing two

ADAS, and showing how generated SMT

code actually looks like is online available.

http://rise4fun.com/Z3/2AsLg

1(define-fun IsIn_Number_Range((v Number) (r Range)) Bool

2 (and (GreaterThen_Number_Number v (minimum r))

3 (LessThen_Number_Number v (maximum r))

4 (or (not (resDefined r))

5 (Equals_Number_Number

6 (Mod_Number_Number (Minus_Number_Number v (minimum r))

7 (resolution r))

8 (mk-number 0)))))

Z3

OCL/P has a better understandable mathematical infix notation, while Z3

uses a parenthesized prefix notation which is not easy to read and write.

1def boolean infix (Number v) in (Range r) is:

2 result = v >= r.min && v <= r.max &&

3 (~r.res || (v - range.min) % range.res == 0)

OCL/P

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 11

Simulation (Preorder) Algorithm

1; meta-model definition

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (target (List Name)) (id ID)))))

4; instance creation

5(mk-connector (insert n_switch1 (insert n_out1 nil))

6 (insert n_mul (insert n_in2 nil)) id_1593458942)

Z3 …

1(define-fun getConnectorSourceFromId ((id Int)) (List Int)

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (ite (= id 2) (insert 2 (insert 56 nil))

4 (ite (= id 14) (insert 0 (insert 56 nil))

Z3 …

Z3 code used in first version (top) and last version (bottom)

Impact of generated SMT code on Z3’s execution time (A = 126 / B = 96)

*
a

d
d

e
d
s
i
m
p
l
i
f
y
s
o
l
v
e
-
e
q
s
s
m
t

a
s

s
o

lv
e

r
s
tr

a
te

g
y

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 12

Counter Example as Simulink Model

type of incompatibility

provided counterexample

Engineer Fronted

violated constraint

backward compatibility

of ECU V2 to ECU V1

as no counterexample for
EU::EmissionCOntrol is provided
this constraint is not violated

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 13

Outline

Compatibility and Industrial Requirements2.

Introduction Extendable Toolchain3.

Conclusion4.

Motivation and Example1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 14

Conclusion

 Updates of software components are very unpredictable due to

• different versions

• variants

• and configuration options

 Presentation of a highly adaptable infrastructure to check

compatibility constraints

• based on a generic meta-model and employs OCL at runtime

• customizability is achieved via plug-in points

• different views for developer and engineer are given inside the

presented toolchain

• since all transformations are dynamically executed during the

checking process, redefinitions and extensions of compatibility

definitions and compatibility variations (e.g. for local markets) are

supported

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 15

(1) Compatibility constraints should be defined in comprehensive and

concise notation

• Usage of OCL/P instead of plain solver code as it is easer to

read and understand

• Feasible, not too formal for the developer

• Introduction of two user types (engineer and developer)

(2) Method should support heterogeneous C&C architecture models

• Plug-in structure for use of different modelling languages and

solvers

• Trough own meta-model and plugin structure it is usable for

further modeling languages as the meta-model is based on an

intensive analysis of well established modeling languages.

Conclusion (Requirements from Industry)

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 16

(3) Developers should be able to modify structural compatibility

constraints at runtime

• OCL constraints can be added dynamically

• 63 constraints have been identified

(4) Meaningful and model related error messages for engineers

• Textual / graphical results instead of sat / unsat

• Constructs counter-example if not similar

(5) Genuine C&C model files should not be modified

• New m-files are generated instead of changing the original ones.

• Textual results presented in individual files

Conclusion (Requirements from Industry)

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 17

Thank you for your attention.

