
On the Support of Qualified Associations in OCL

Lars Hamann1, Martin Gogolla2, and Nisha Desai2

1 hagebau IT GmbH, Soltau, Germany
lars.hamann@hagebau.com

2 University of Bremen, Bremen, Germany
{gogolla|nisha}@informatik.uni-bremen.de

Abstract. Associations are the glue that keeps items in object-oriented
systems together. In UML qualified associations are used to express ad-
ditional information about access to connected objects. From an imple-
mentation point of view, qualified associations can be used to define
access to multi-dimensional data structures like arrays. From a concep-
tual point of view, they can be looked at as being ternary associations
with particular OCL constraints expressing the multiplicities. Qualified
associations are only partly described in the OCL standard, for example,
it is not clear how to access all qualifier values for a qualified object. This
paper takes up such questions and makes proposals for the support of
qualified associations in the context of OCL.

Keywords: UML, OCL, qualified association, navigation.

1 Introduction

In object-oriented modeling languages like UML [14], structural class modeling
is supported by query and constraint expressions formulated in OCL [16, 1].
Associations [15] play a central role in structural modeling because they provide
the glue that keeps the system together. Among the many facets (like association
class, aggregation, composition, or derived association) that associations can
display, qualified associations are among the rarely discussed topics.

Qualified associations are typically used to indicate fast access when navigat-
ing from one class to the other: “An index in a database ... is properly modeled
as a qualifier” [14]. The index attributes in the database correspond to the quali-
fier attributes in the model. And qualified associations are employed to partition
the links interpreting the association according to instances possessing particular
properties.

Concerning perspectives, qualified associations can be looked at from the
implementation point of view. Then they are discussed in connection with arrays.
If one looks at them from a conceptual modeling language point of view, they
are discussed in connection with modeling features like association classes or
ternary associations. They may also be transformed into such simpler modeling
language elements.

Qualified associations enrich an association end with information about ac-
cess to related objects. They must be studied with care in particular with regard



to the questions how many qualified objects and qualifier values can be con-
nected to one or many target objects “on the other side of the association”.
Thus whether to consider sets or bags for typing in this context becomes crucial.

In current OCL [12, 13], qualified associations are somewhat underrepre-
sented resp. underspecified. One cannot define constraints on qualifier at-
tributes [4] unless one models information in redundant form, but nevertheless
there is no way in OCL to access qualifier attributes in the sense that one can
build expressions returning a qualifier value. It is only possible to employ quali-
fier attributes for accessing the target objects in the qualified association.

Let us explain our ideas with an example. In Fig. 1 the qualified associ-
ation between the classes University and Student allows the modeler to ac-
cess a unique Student, if a University object and a matriculation number

Fig. 1. Example for currently unsupported OCL constraints for qualified associations

is given. The matriculation numbers are supposed to have a particular for-
mat consisting of the last two digits of the year of enrollment of the stu-
dent followed by a running number within the enrollment year consisting of
four digits: YYNNNN. In order to formally establish the requirements, two
OCL invariants have been formulated in the comment node within the ob-
ject diagram. These invariants cannot be formulated with current OCL, be-
cause an access to qualifier attribute values is needed which is currently not
possible. In the first expression, self.student[].matriculationNum delivers for
self:University all matriculation numbers within that university. In the second
expression, self.university[].matriculationNum returns for self:Student the ma-

2



triculation number for that Student object. Details of the bracket notation will
be explained below.

The rest of the paper is structured as follows. Section 2 discusses qualified
associations from two points of view, namely from an implementation point of
view and from a conceptual point of view. Section 3 puts forward our proposals
for typing OCL expressions in the context of qualified associations and for access-
ing the values of qualifier attributes with OCL expressions. Section 4 discusses
related work. The final section concludes and sketches future work.

2 Qualified Associations

In this section qualified associations are described using two different views.
At first, an implementation oriented explanation is given. Afterwards, they are
explained using a conceptual view.

Qualified associations can be used to model technical details about the im-
plementation of associations. They enrich general associations with information
about which data is required to access linked objects, i. e., the source object to-
gether with the qualifier values defines the result of a navigation. Informally, they
also indicate that fast access to the linked objects is desired. This makes them
especially useful for models that are close to the implementation, like platform
specific models or models for runtime verification [9].

Figure 2 shows a qualified association with two qualifiers of type integer that
closely matches the implementation in Java as a two-dimensional array given
above the figure. The given example defines the structure of a game map similar
to a chess board. The map consists of tiles that are uniquely defined by their
(x,y)-coordinates. Please note, that the UML model contains additional informa-
tion in contrast to the shown implementation only naming the two dimensions
of the array.

1 public class Map {

2 private Tile [][] tiles;

3 }

x : Integer
y : Integer

Map
Tile

tiles
0..1MapTiles

map

1

Fig. 2. A qualified association

Qualified associations are not only useful to represent arrays. They can also
be used to overcome a drawback in OCL, namely the lack of a collection type to
express map-like data structures.

3



Apart from looking at a qualified association from the implementation point
of view, one can also look at it from the perspective of other UML and OCL
modeling features that express the same characteristics. Figure 3 shows in the
lower part how a qualified association can be understood as a ternary association.

With an additional OCL constraint one can express the qualified associa-
tion multiplicity. The qualifier becomes an attribute of an additional class in
the ternary association. The constraint basically states that for all qualified ob-
jects self and for all possible qualifier values qv, the size of the set of target
objects being also linked to the same qualified object self and linked to the
qualifier value qv is bound by the multiplicities LL and HH (for an LL..HH mul-
tiplicity range).

A transformation from a qualified association into an association class is
implicitly suggested in [14] and has been proposed in [8]. However the current
transformation into a ternary association captures more cases. The middle parts
of Fig. 3 sketch a transformation into an association class, but they also directly
indicate that a situation where one qualified object being connected with two
different qualifier values cannot be expressed, if the association class is equipped
with a set of links. A link between the qualified object and the target object can
only be equipped with one qualifier value, but not with two.

Fig. 3. Qualified associations transformed into associations

4



As far as we know, the need for an interpretation of qualified associations
in terms of ternary associations has not been discussed so far. Further down
in Fig. 7 and 8 we will show how the two introductory examples for qualified
associations are formulated in form of ternary associations.

The translation into ternary association including standard OCL constraints
is not only an intellectual exercise. For treating advanced UML modeling fea-
tures in the context of validation and verification we translate advanced mod-
eling concepts into a so-called base model [10]. Our underlying proving engine
basically only handles plain associations and not advanced concepts as qualified
associations. Thus, in that context we explicitly need this transformation.

3 Qualified Associations in OCL

The navigation over qualified associations is only sketched in the current OCL
specification [13, p. 22,144]. For example, it lacks information about the back-
ward navigation from the target of a qualified association. Consider again the
example of a qualified association between a map and its tiles shown in Fig. 2.
The OCL specification [13, p. 22] describes the results of the first two navigation
expressions shown in Listing 1.1. However, no information about the result type
of the third navigation expression is given. The first and the second expression
are shown as they would be typed in the modeling tool USE [7].

Listing 1.1. Types of navigation expressions for qualified associations

1 aMap.tiles [1,1] : Tile (with aMap : Map ,

2 i.e., aMap ia an expression of class Map)

3 aMap.tiles : Set(Tile)

4 aTile.map : UNCLEAR (with aTile : Tile)

Like the authors of [4], we propose to extend the applicability of qualified
associations and especially of the qualifier in OCL as described next. In detail,
we propose to

1. clearly define types and semantics of navigations for all relevant combinations
of multiplicities, and

2. add support for the access to the values of qualifiers.

3.1 Navigation

On the type level, a navigation expression including qualifier values (line 1 in the
above listing) behaves like a normal navigation using an unqualified association.
If the upper bound of the multiplicity is one, the result type is the class at the
target end. Otherwise a collection conforming to the end properties (ordered,
unique, etc.) of the type at the target end is returned. The linked objects are
determined by the link set of the association and the qualifier value.

If no qualifier values are provided, which is also a valid navigation [12, p.
21], the result type of such an expression is a set of objects of the target class

5



as it is informally stated by the OCL specification. A user can only deduct the
result type by examining the provided example model in [12]. Taking the source
multiplicity into account, the type Set(Tile) as the result type of the navigation
expression is valid because a single tile can only be linked to one pair of map
and an (x,y)-coordinate. Therefore, a map can only be linked once to a given tile
making the result of the navigation set-valued. If the upper bound of the source
multiplicity is greater than one, this statement does not hold anymore. Since the
upper bound now specifies that a single tile can be linked with multiple pairs
of map objects and (x,y)-coordinates, it is not guaranteed, that a tile is used
only once in a single map object. To avoid a loss of information, the result of
the navigation should lead to a bag.

For the opposite navigation over a qualified association, i. e., from the target
end to the qualified end, the OCL specification contains no information. Follow-
ing the semantics of non-qualified navigations, the result type of the navigation
depends on the upper bound of the multiplicity of the target end. If it is one,
the result type is the type of the class at this end. The default3 type of a nav-
igation to an association end with a multiplicity greater than one is defined as
a set of linked objects at this end. Navigation over qualified associations cannot
follow this definition if no loss of information is pursued. Given a multiplicity
greater than one, the result type should be a bag of the type of the class at
this end, because a target object can be linked by multiple pairs consisting of
qualified object and qualifier. Figure 4 shows such a situation where a tile is
connected twice to a single map by using different qualifier values. The naviga-
tion tile1.map should retrieve all available information and therefore it should
return Bag{map2,map1,map1}.

x = 1
y = 2

x = 2
y = 2

x = 0
y = 0

map2:Map

tile1:Tile
map1:Map

Fig. 4. An example state for a qualified association

All four relevant combinations of multiplicity upper bounds are shown in
Fig. 5. For each combination the three navigations and their type as we propose

3 In this context default means the association is marked as unique.

6



are shown below the example. Further, the type of the expression when following
the OCL specification is given.

q : IntegerQ T
qTarget

0..1

qSource

0..1

1 :aQ.qTarget [1] -> T // OCL spec.: T

2 :aQ.qTarget -> Bag(T) // OCL spec.: Set(T)

3 :aT.qSource -> Q // OCL spec.: UNCLEAR

q : IntegerQ T
qTarget

*
qSource

0..1

1 :aQ.qTarget [1] -> Set(T) // OCL spec.: Set(T)

2 :aQ.qTarget -> Bag(T) // OCL spec.: Set(T)

3 :aT.qSource -> Q // OCL spec.: UNCLEAR

q : IntegerQ T
qTarget

0..1

qSource
*

1 :aQ.qTarget [1] -> T // OCL spec.: T

2 :aQ.qTarget -> Bag(T) // OCL spec.: Set(T)

3 :aT.qSource -> Bag(Q) // OCL spec.: UNCLEAR

q : Integer TQ
qTarget

*
qSource
*

1 :aQ.qTarget [1] -> Set(T) // OCL spec.: Set(T)

2 :aQ.qTarget -> Bag(T) // OCL spec.: Set(T)

3 :aT.qSource -> Bag(Q) // OCL spec.: UNCLEAR

Fig. 5. Navigation over qualified associations

3.2 Qualifier Values in OCL Expressions

Our second proposal is to make qualifier values to first class citizens in OCL as
it also proposed in [4]. In OCL 2.4 qualifier values cannot be queried. Therefore,
some other information store, like for example attributes, are required to de-
fine constraints on them. This complicates the definition of model constraints or

7



leads to unnecessary duplications. Consider our example using maps and tiles. A
possible extension would be to add constraints to the class Tile that require in-
formation about the position of the tile. One could add the attributes x:Integer
and y:Integer to the class, but this does not provide any new information to
the model. It is some kind of a workaround.

Therefore, we propose an extension to OCL, similar to the one presented in
[4]. In contrast to our work, the authors propose to add a navigation expression
to access all (key,value)-pairs of a qualified association. For this, they suggest
to use empty brackets []. For the result the authors introduce a new collection
type Map. While we follow the syntax, we argue that a map is inadequate since
multiple qualifiers are not handled. To be able to handle qualified associations
with multiple qualifiers, we propose to return the linked object together with
the qualifier values as an OCL tuple. The tuple parts are built by the name of
the target end and the names of the qualifier. The bracket notation can be used
on both sides of the qualified association.

The following listing shows the result of such navigation expressions when
evaluated using the system state shown in Fig. 4:

1 ?map1.tiles[]

2 -> Set{Tuple{tiles=Tile1 , x=1, y=2},

3 Tuple{tiles=Tile1 , x=2, y=2}}

4 :Set(Tuple(tiles:Tile , x:Integer , y:Integer ))

5 ?map1.tiles [].y

6 -> Bag{2, 2}

7 :Bag(Integer)

8 ?tile1.map[]

9 -> Set{Tuple{map=map2 , x=0, y=0},

10 Tuple{map=map1 , x=1, y=2},

11 Tuple{map=map1 , x=2, y=2}}

12 :Set(Tuple(map:Map , x:Integer , y:Integer ))

The resulting set of tuples can now be used as any other set in OCL to define
constraints or to query the system state.

For the general case of bracket navigation, the four relevant combinations of
multiplicity upper bounds are also shown in Fig. 6. There, for each combination
the two bracket navigations and their result type are shown. Two examples for
bracket navigations have already been given in Fig. 1.

3.3 Further examples

Figures 7 and 8 show how the two introductory examples are represented as
ternary associations together with an appropriate OCL constraint. Please note
that in the case of two or more qualifier attributes the stated constraint schema
has to be slightly extended to capture more qualifiers. However, the basic un-
derlying structure of the constraints does not change.

Figure 9 shows an example for using qualified association with a multiplicity
of more than one on the target side. We have not found such an example in the

8



q : IntegerQ T
qTarget

0..1

qSource

0..1

1 :aQ.qTarget [] -> Set(Tuple(qTarget:T,q:Integer ))

2 :aT.qSource [] -> Tuple(qSource:Q,q:Integer)

q : IntegerQ T
qTarget

*
qSource

0..1

1 :aQ.qTarget [] -> Set(Tuple(qTarget:T,q:Integer ))

2 :aT.qSource [] -> Tuple(qSource:Q,q:Integer)

q : IntegerQ T
qTarget

0..1

qSource
*

1 :aQ.qTarget [] -> Set(Tuple(qTarget:T,q:Integer ))

2 :aT.qSource [] -> Set(Tuple(qSource:Q,q:Integer ))

q : Integer TQ
qTarget

*
qSource
*

1 :aQ.qTarget [] -> Set(Tuple(qTarget:T,q:Integer ))

2 :aT.qSource [] -> Set(Tuple(qSource:Q,q:Integer ))

Fig. 6. Navigation over qualified associations with bracket notation []

9



Fig. 7. University example transformed into ternary associations

Fig. 8. MapTiles example transformed into ternary associations

10



Fig. 9. Example for a qualified association with set-valued target multiplicity

11



literature. The example is part of a model for a German card game called “Dop-
pelkopf”. In that game each card of an ordinary card collection is present twice,
as shown in the object diagram in which the Diamonds Ten and the Clubs Queen
are twice present on the hand of a card player. Please note that there are ten
card objects, but only eight qualifier values; the qualifier values (Diamonds,Ten)
and (Clubs,Queen) are both connected to two card objects.

4 Related work

As already stated, the semantics of qualified associations by transforming them
into equivalent constructs in UML using additional constraints were already dis-
cussed in [5, 8]. In this paper we extended this transformation by considering
ternary associations. The link between UML associations including qualified as-
sociations and their implementation is examined in [2, 3].

In [11] the formal semantics of associations and association ends are discussed
in detail. The author shows several arising inconsistencies by using constraints
like unique. While association classes are covered, qualified associations are not.
Work on the mapping between UML unqualified associations and their Java
implementation has been published in [6].

The extension to OCL proposed in [4] is similar to our proposal, but works
only for qualified associations with one qualifier. As we have shown, our modified
and extended version of that proposal also supports multiple qualifiers.

5 Conclusion

This paper has discussed support of qualified associations in OCL. In particular
we have clarified typing issues (sets vs. bags) for qualified associations distin-
guishing between different stated multiplicities. We have made a proposal for
accessing qualifier values which is not possible employing the current OCL stan-
dard features. In particular constraints formulating dependencies between clas-
sifier values and other modeling items now become possible. We have clarified
and extended the options from the current OCL standard.

Future work includes completing and polishing the implementation of our
proposal in the tool USE. Discussions with the OCL community may lead to
further requirements concerning qualified associations. Extended OCL support
for other association-like relationships like aggregation and composition might be
useful and worth to be studied as well, for example, in the context of composition
one might introduce a particular OCL expression for navigating to the aggregate
object along the black diamonds without having to explicitly mention association
end names.

References

1. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive Guide.
In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) Proc. 12th Int. School For-

12



mal Methods for the Design of Computer, Communication and Software Systems:
Model-Driven Engineering. pp. 58–90. Springer, Berlin, LNCS 7320 (2012)

2. Diskin, Z., Dingel, J.: Mappings, maps and tables: Towards formal semantics for
associations in UML2. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 230–244. Springer (2006)

3. Diskin, Z., Easterbrook, S., Dingel, J.: Engineering Associations: From Models to
Code and Back through Semantics. In: Paige, R.F., Meyer, B., Aalst, W., Mylopou-
los, J., Rosemann, M., Shaw, M.J., Szyperski, C. (eds.) Objects, Components, Mod-
els and Patterns, LNBP, vol. 11, pp. 336–355. Springer Berlin Heidelberg (2008)

4. Dove, A., Barua, A., Cheon, Y.: Extending OCL to Better Express UML Qualified
Associations. Tech. rep., Department of Computer Science, University of Texas at
El Paso (2014)

5. Flake, S.: Eliminating Qualifier and Association Class Ambiguities from OCL.
UML 2.0: The Future of the UML Object Constraint Language (OCL), UML
Conference Workshop (2000)

6. Gessenharter, D.: Mapping the UML2 Semantics of Associations to a Java Code
Generation Model. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M.
(eds.) Model Driven Engineering Languages and Systems, LNCS, vol. 5301, pp.
813–827. Springer Berlin / Heidelberg (2008)

7. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

8. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: Clark, T., Warmer, J. (eds.) Advances in Object Modelling with the OCL, pp.
86–115. Springer, Berlin, LNCS 2263 (2001)

9. Hamann, L.: On formalizing UML and OCL features and their employment to run-
time verification. Ph.D. thesis, University of Bremen (2015), http://elib.suub.uni-
bremen.de/edocs/00104250-1.pdf

10. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: From UML/OCL to Base Models:
Transformation Concepts for Generic Validation and Verification. In: Kolovos, D.,
Wimmer, M. (eds.) Proc. 8th Int. Conf. Model Transformation (ICMT 2015). pp.
1–17. Springer, LNCS 9152 (2015)

11. Milicev, D.: On the Semantics of Associations and Association Ends in UML.
Software Engineering, IEEE Transactions on 33(4), 238 –251 (april 2007)

12. Object Constraint Language 2.3.1. Object Management Group (OMG) (Jan 2012),
http://www.omg.org/spec/OCL/2.3.1/

13. Object Constraint Language 2.4. Object Management Group (OMG) (Feb 2014),
http://www.omg.org/spec/OCL/2.4/

14. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, 2 edn. (2004)

15. Stevens, P.: On the interpretation of binary associations in the unified modelling
language. Software and System Modeling 1(1), 68–79 (2002)

16. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley (2003), 2nd Edition

13


