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Abstract. Declarative model transformation languages require that the
underlying reasoning engine synthesises an execution plan that guaran-
tees correctness while also providing reasonable performance. Optimiza-
tion of these execution plans is a hard problem and for languages such
as QVT Core, finding an optimal solution is still unsolved. By under-
standing how a brute force execution plan guarantees correctness, we
can find an algorithm to construct the complete solution space of correct
execution plans and from it find an optimal solution. In this paper we
explore how the complete solution space of execution plans can be con-
structed, how data dependency analysis can be used to evaluate these
plans for correctness and how their performance can be estimated. The
results show that our performance estimates are correlated to the ob-
served performance.

1 Introduction

Model to model transformations are usually expressed in dedicated domain spe-
cific languages, commonly referred to as model transformation languages (MTLs).
MTLs express algorithms that describe how elements in a model (or models)
are transformed into elements in another model (or models). Declarative MTLs
(DTL) only provide logic constructs to express relations between elements in
these candidate models and the execution engine is responsible for synthesising
an execution plan that uses these relations to perform the model transformation.

DTLs are attractive because “particular services such as source model traver-
sal, traceability management and automatic bi-directionality can be offered by
an underlying reasoning engine” [2]. The QVT Core language (QVTc) [1] uses
pattern matching as the primary logic construct. Pattern matching is done over
a flat set of variables by evaluating conditions over those variables against the
candidate models. Although our optimization algorithms have been developed
for QVTc, the ideas presented in this paper are mostly discussed in a language-
agnostic level that can be applied to most, if not all, DTLs.
⋆ This research was supported by the ESPRC through the LSCITS initiative.



A declarative transformation program (DTP) is a specification written in a
DTL. The relations expressed in a DTP can be considered as a set of constraints
that must hold for all the candidate models. The execution plan, as a minimum,
must check and enforce (by modifying if necessary) the candidate models to
ensure that the constraints are satisfied. This paper focuses on the problem of
computing an efficient execution plan for a DTP. The correctness problem is also
considered, since the lack of correctness will result in models that do not satisfy
the constraints. Finding an optimal execution plan for DTPs is a hard problem
and well known for other declarative languages such as logic programs, relational
query languages and triple graph grammars (TGG). On those domains several
approaches have been proposed in the past.

However, DTL optimization problem presents unique challenges. Mainly, the
lack of explicit relations between rules and the guarantee for correctness. To
understand and overcome these challenges we first propose a representation for
DTPs, presented in Sect. 2. Next, Sect. 3 presents how the lack of explicit rela-
tions between rules results in solution spaces of considerable size. Following, we
show how data dependency analysis can be used to find implicit relations be-
tween rules and as a result reduce the solution space by filtering incorrect plans.
In Sect. 4 we discus how the execution plans can be evaluated and a cost func-
tion derived and Sect. 5 evaluates the cost function against performance results.
Finally, Sect. 6 presents related work and Sect. 7 concludes with a summary and
future work.

2 Execution Plan and Running Example

In this section we present how an execution plan can be represented by a model
and how all possible execution plans for a given DTP can be constructed. Our
execution plan model is defined for rule-based DTLs, where the relations are
grouped into rules, but can be easily adjusted for other kind of DTLs. In a
rule-based DTL, each rule defines a set of types of interest, and relations in the
rule are restricted to relations between instances of those types. In this sense,
each rule can be viewed as a procedure with a set of parameters (each with a
type from the types of interest) and a set of statements. The direction of these
parameters, e.g. input or output, is defined by the semantics and syntax of each
particular DTL.

Example Our running example is a transformation that creates a copy of a
graph, written in QVTc, as presented in Listing 1. The complete QVTc seman-
tics and syntax can be found in [1]. The graph domain is presented in Fig. 1a.
To distinguish between the source and target models, we prepend S and T to
the graph domain to indicate source and target models respectively. In QVTc,
a middle (trace) model must be explicitly defined; its domain is presented in
Fig. 1b. Although QVTc is a bi-directional DTL, we have written our example
in a uni-directional manner for simplicity. For a bi-directional transformation the
proposed approach will work by indicating for which direction the exploration



is to be performed. We have defined two model types: sourceGraph and target-
Graph, and an execution direction from the former to the latter. The complete
specification of the transformation is presented in Listing 1.

(a) Graph Domain (b) Graph2Graph Domain

Fig. 1. The domains for the endogenous QVTc graph to graph transformation.

Listing 1. QVTc graph to graph transfor-
mation.

1 map g2g in Graph2Graph {
2 sou r ceGraph ( g1 : SGraph | ) { }
3 enforce t a r g e tG r a ph ( ) {
4 r e a l i z e g2 : TGraph | }
5 where ( ) {
6 r e a l i z e g2g :G2G |
7 g2g . sg : = g1 ; g2g . t g : = g2 ;
8 g2 . name : = g1 . name ; } }

10 map n2n in Graph2Graph {
11 sou r ceGraph ( g1 : SGraph ,
12 n1 : SNode | n1 . g raph =g1 ; ) { }
13 enforce t a r g e tG r a ph (
14 g2 : TGraph | ) {
15 r e a l i z e n2 : TNode |
16 n2 . g raph : = g2 ; }
17 where ( g2g :G2G | g2g . sg =g1 ;
18 g2g . t g =g2 ; ) {
19 r e a l i z e n2n :N2N |
20 n2n . owner : = g2g ;
21 n2n . sn : = n1 ; n2n . tn : = n2 ;
22 n2 . name : = n1 . name ; } }

24 map e2e in Graph2Graph {
25 sou r ceGraph ( g1 : SGraph ,
26 sn1 : SNode , t n1 : SNode ,
27 e1 : SEdge |
28 e1 . g raph : = g1 ;

e1 . s o u r c e : = sn1 ;
29 e1 . t a r g e t : = tn1 ; ) { }
30 enforce t a r g e tG r a ph ( g2 : TGraph ,
31 sn2 : TNode , t n2 : TNode | ) {
32 r e a l i z e e2 : TEdge |
33 e2 . g raph : = g2 ; e2 . s o u r c e : = sn2 ;
34 e2 . t a r g e t : = tn2 ; }
35 where ( g2g :G2G , sn2n :N2N ,
36 tn2n :N2N | g2g . sg =g1 ;
37 g2g . t g =g2 ;
38 sn2n . owner=g2g ; sn2n . sn= sn1 ;
39 sn2n . tn = sn2 ; tn2n . sn= tn1 ;
40 tn2n . tn = tn2 ; ) {
41 r e a l i z e e2e : E2E |

e2e . owner : = g2g ;
42 e2e . s e : = e1 ; e2e . t e : = e2 ;
43 e2e . s o u r c e : = sn2n ;
44 e2e . t a r g e t : = tn2n ; } }

Rule g2g Listing 1 at line 1 defines the relation between Graph elements. The
TGraph and G2G elements are defined as realized variables (in lines 4 and 6 re-
spectively) so they will be created in the target and trace model if not found.



Line 8 states that the target graph must have the same name as the source graph.
Rules n2n for Node (line 10) and e2e for Edge (24) elements, exhibit a similar
pattern, with additional conditions to verify that we are keeping the correct ref-
erences throughout. For example, in rule n2n we are interested in a G2G that is
the trace element for the source graph and the target graph (lines 17 and 18).
The predicates in the guard of the where (lines 35 to 40) of rule e2e guarantee
that the source and target nodes of e2 (target model edge) match the source
and target nodes of e1 (source model edge).

According to the semantics of QVTc all variables in guard patterns are input
parameters. For realized variables it depends on the execution direction, i.e.
realized variables in the target domain (which represents the target model) are
output parameters. Realized variables in the middle model are always considered
as output parameters. Thus, for example, in rule g2g the input parameter is:
g1:SGraph, and the output parameters are: g2:TGraph and g2g:G2G.

2.1 Transformation Execution

We propose a definition of correctness based on the constraint satisfaction re-
quirements: an execution of the DTP results in all the relations holding for all
the candidate models.

Definition 1. A transformation execution is correct, if after execution the re-
lations stated in the DTP are satisfied by the candidate models.

Using the procedure analogy, execution of a transformation can be accom-
plished by invoking all the rules it consists of. Thus, the reasoning engine must
produce an execution plan that invokes the rules in such a way that the execution
is correct. Aspects of the execution plan that affect correctness are: invocation
order, number of invocations and how arguments are bound for invocation.

Algorithm 1 Naïve declarative transformation execution
1: procedure execute(Transformation)
2: repeat
3: forEach rule r in Rules do ◃ R times
4: forEach combination of P⊙E do ◃ PE times
5: if canBeExecuted(r) then
6: executeRule(r)
7: end if
8: End for
9: End for
10: until no changes in candidate models ◃ D times
11: end procedure

Naïve Execution Plan. The simplest, naïve execution plan we can conceive
can be represented by Algorithm 1. Since there are no explicit relations between
rules, the algorithm iteratively invokes all rules until no more changes are ob-
served in the candidate models. If relations existed, the rules could be invoked



following these relations. For example in QVT Relations[1], the rules in the where
clauses could be used for a top-down invocation. In line 4, all combinations of
parameters (P) with model elements (E) are found. For example for rule n2n,
all combinations of existing elements of types SGraph, SNode, TGraph and G2G
would be found.

Procedure canBeExecuted (line 5) tests if the binding process (line 4) bound
an element for each of the input parameters, i.e. all elements needed by the rule
are available. Procedure executeRule (line 6) invokes the rule and modifies the
candidate models (i.e. adds or modifies elements).

The reasons this algorithm will correctly execute a QVTc transformation
(and possibly any rule-based DTP) are as follows. (i) All possible invocation
orders are considered (execution can start at any rule) by invoking all the rules.
(ii) Since all rules are invoked indefinitely they are invoked as many times as
necessary. (iii) All possible combinations of candidate model elements and rule
parameters are used for argument binding. New elements (realized) by a rule
execution will be available for binding in the next iteration.

Based on these reasons we introduce an additional constraint for execution
plans: completeness:

Definition 2. An execution plan is complete if all the rules in the transforma-
tion are invoked at least once.

2.2 Execution Plan Model

A complete execution of the naïve algorithm can be represented by a list of rules,
that starts with the first executed rule and ends at the last one, with elements in
the list representing the order in which rules were executed. An execution plan is
then any of such lists. We propose to model execution plans as directed graphs,
adopting the representation of execution paths used in compiler optimization [2].

In an execution plan graph each node represents a rule. Directed edges are
used to represent rule calls. There is a specially designated root node that rep-
resents the initial execution point. Outgoing edges of a node are ordered, such
that lower order edges are called before higher order ones. As such the execution
plan can be regarded as an ordered tree, rooted at the root node. This model
is language agnostic, as the references from nodes to rules can be made generic
in order to point to rules in any transformation language. A significant differ-
ence with the list representation, is that in the execution plan graph, rules are
allowed to invoke other rules. We say that the invoked rules are nested in the
caller rule. However, nesting in this case does not entitle containment as a rule
may be invoked from many rules. This representation also allows modelling of
loops, for example those from recursive invocations.

Execution plan graphs are executable, with execution semantics defined by
outgoing edge order and call edge traversing, i.e. the execution follows a depth-
first traversal. For this, our execution plan graph guarantees outgoing edge
traversal order. As a result, the execution plan model can be easily used for
interpreted execution or as a structure for code generation.



3 Solution Space Exploration

The purpose of the complete solution space exploration is to generate all possible
execution plans that produce the same results as the naïve plan. Building the
complete solution space is clearly impractical and not scalable. However, this
exploratory setup will allow us to identify desired characteristics of execution
plans that will lead to correct transformations. The next step of this research
will use these characteristics to develop a heuristic approach for efficient synthesis
of execution plans.

In the naïve algorithm it is impossible to statically determine how many times
a rule should be invoked. Hence, any representation as an execution plan graph
would require an infinite number of nodes. One possible way of constructing finite
execution plans is to delegate the outer loop control to the reasoning engine and
allow the execution plan graph to have loops. Loops allow invocation sequences
to be repeated, making it possible to represent any execution with a finite list.
Loops in the execution plan that result in infinite loops during execution can
be broken by the reasoning engine. With these premises, Algorithm 1 can be
represented with our execution plan model, with calls from the root to each of
the transformation rules and a loop call from the root to itself after all the rule
calls.

Given a DTP, the solution space is constructed by creating execution plans
that (collectively) invoke all the rules in all possible orders and nestings. Note
that although we can now construct finite execution plans, we still have no
way of knowing how many times each rule should be invoked or in what order.
This results in an infinite solution space. Next we show that by identifying
optimizations in Algorithm 1 it is possible to produce a finite solution space of
execution plans that produce the same outcome.

3.1 Limiting The Solution Space

There are two ways of optimizing an algorithm [8]: improve the logic component
or improve the control. In our approach the reasoning engine cannot modify
the DTP logic, hence optimization has to be done on the execution plan. The
complexity of Algorithm 1, due to the loops at lines 2, 3 and the binding process
(line 4), is D×R×PE . The factor PE takes into account all possible combinations
of parameters and model elements. We have identified two main optimizations of
this algorithm: remove the outer loop and minimize the combinations of param-
eters that are attempted. Next, sections Sect. 3.2, Sect. 3.3 and Sect. 3.4 show
how to optimize the former and finally Sect. 3.5 discusses the latter.

3.2 Permutation Solutions

Since Algorithm 1 is bound to terminate (no changes in candidate models), any
execution of the algorithm can be represented by a finite set of rule invocations.
If the invocation order can be statically computed or the correctness of a given
order it can be proved, then the outer loop can be eliminated. Finding all the



combinations of parameters and model elements for each rule is impractical. This
search can be optimized be reducing the search space, for example by limiting
the search to the elements consumed and produced by a rule.

g2g

root

(a) Step 1

e2eg2g

root

g2g

root

e2e

①

(b) Step 2

e2eg2g

root

n2n

e2eg2g

root

n2n

e2eg2g

root

n2n

② ③ ④

(c) Step 3

Fig. 2. Constructing solutions by permutations.

To eliminate the outer loop, we must make sure that all possible executions
plans are constructed. Construction of the plans is guided by all permutations of
a set of the DTP rules. Although the permutations of a finite set are also finite,
the number of possible execution plans grows exponentially as the number of
rules increases. We present how this can be achieved, but reiterate that in a
real-world scenario this is impractical. The initial plans created will include each
rule once. At a later stage, we will add missing invocations that guarantee that
the plan is correct.

Example Given the rule permutation {g2g, e2e, n2n}, solutions for this permu-
tation can be created as presented in Fig. 2. The first step, Fig. 2a, consists in
adding an edge from the root to the first rule (g2g) in the permutation. For the
next rule, e2e, we can create two different trees by adding invocations from root
and from g2g, as presented in Fig. 2b. Selecting n2n next, new trees are created
by adding edges from all existing nodes in the tree in all existing trees. For ex-
ample, if we select tree ① in Fig. 2b, the three trees in Fig. 2c will be created.
The process will be repeated for the next permutation of rules, e.g {e2e, n2n,
g2g} and so on and so forth until all trees for all possible execution plans (where
each rule is invoked once) are created.



3.3 Data Dependency Analysis

A rule might not be executed due to missing bindings (conditional in Algorithm 1
at line 5). The outer loop guarantees that the rule is attempted at a later time
when new elements have been created and the bindings might be complete.

The failed attempt to execute a rule due to the lack of valid input parameters
can be understood as a producer-consumer problem. Execution of a rule that
consumes a set of types may fail if the rules that produce those types have
not been executed. We will use the term starvation to refer to a rule that fails
to execute due to a lack of elements of its consumed types. Next we present
how data dependency analysis can be used to validate and/or complete the
permutation solutions to produce execution plans that do not present starvation
while ensuring that rules are called as seldom as necessary, and which will result
in correct transformation executions.

The producer-consumer relations can be easily derived from the types of the
input and output parameters. If a rule has an input parameter of type A, then it
will have a data dependency on all rules that have output parameters of type A.
These dependencies can be represented in a dependency graph. A dependency
graph is a directed graph in which nodes represent rules and types involved in
the transformation, and edges represent the data dependencies. Outgoing and
incoming edges of a rule represent the types of the output and input parameters
respectively. The dependency analysis information can be used to detect starva-
tion in an execution plan. If there is a path in the dependency graph from rule
A to rule B, then we say that rule B is a consumer of rule A. Conversely, rule
A is a producer of rule B.

The outer loop of Algorithm 1 also guarantees that all elements created dur-
ing execution are taken into consideration in the binding process. We introduce
the concept of thoroughness to validate that an execution plan satisfies this con-
straint.

Definition 3. A transformation execution is thorough if all the created elements
of a rule are consumed by the rule’s consumers.

Example The dependency graph of the QVTc graph to graph transformation
of Listing 1 is presented in Fig. 3a. It is important to note that we have made
a distinction for multi-consumer edges to represent consumer edges for types
that are used by more than one parameter. The data dependency analysis is
used to evaluate the plans to the right in Fig. 3. The plan in Fig. 3b will present
starvation when rule e2e is called from rule g2g as rule n2n would not have been
executed yet and hence there would be no existing elements of types SNode and
N2N to bind rule e2e parameters. On the other hand, the plan in Fig. 3c presents
starvation due to multi-consumer relations: the call from n2n to e2e will starve
because in the first execution rule n2n will have only produced one SNode and
one N2N, and rule e2e consumes two of each. Regarding thoroughness, the plan
in Fig. 3b is not thorough as elements produced by rule n2n are not consumed
by any rule despite e2e being a consumer.
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Fig. 3. Validate starvation and thoroughness.

3.4 Producer-Consumer Solutions
The set of permutations plans is filtered to eliminate plans that result in starva-
tion and the remaining plans are amended to guarantee that they are thorough.
The amendment process involves adding missing calls for all the producer-con-
sumer relations. As a result, the solution space of all correct execution plans for
a given transformation is constructed.

Example Rule n2n is a consumer of rule g2g and hence plans ① and ② in Fig. 4
are missing invocations from rule g2g to rule n2n. In Fig. 4a the invocation is
added to plan ① resulting in the plan to the right. For plan ② since invocation
order matters, the invocation to n2n can be either done before or after the
existing invocation to e2e. For one invocation we can modify the existing plan,
for the other(s) we need to create an additional plan. The resulting plans are
shown to the right of Fig. 4b.
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e2e n2n

n2n n2n

②

(b) Modify and create

Fig. 4. Completing solutions with thoroughness considerations.

3.5 Input Variable Relations and Binding Solutions
Finally, we consider the case of binding during invocation. If n2n is being invoked,
we need to bind four input variables. In practice, the rule guards define precise re-
strictions on these variables. For example, the predicate n1.graph = g1 indicates



that n1 and g1 are related through the SNode :: graph attribute. Hence, if we
have one it is possible to derive the other. Due to the expressive power of OCL we
limit our analysis to predicates of the form < var > . < property >=< var >.
From this, it is possible to identify primary and secondary variables, where sec-
ondary variables are derived from primary ones. In most cases it is possible to
pick one primary and derive the rest from this one. By using the context infor-
mation and exploiting derivations we are reducing the number of possible input
element combinations that are attempted for each rule.

Consider the case in which rule n2n is being invoked from g2g. In this case,
we can either choose g2:TGraph or g22:G2G as the primary variable. This results
in two versions of the invocation. By adding all possible binding alternatives for
all rules, we can produce a new set of solutions that represent all possible plans
with all possible bindings.

As the number of rules and the number of edges in the dependency graph
increases, the proposed approach to generating the complete execution space be-
comes infeasible. This issue can be resolved by applying search-based algorithms
to find a good enough solution without requiring to do the exhaustive execution
space search. This is a topic for future research.

4 Execution Plan Evaluation

To express starvation and multi-consumer requirements we introduce the concept
of feasibility and from it we can define execution plan correctness:

Definition 4. An execution plan is feasible if all producers of a rule have been
called before the rule is called, and if all rules with multi-consumer relations are
not invoked from the producer of the multi-consumer relation.

Definition 5. An execution plan is correct if it is complete and feasible and
results in a thorough execution.

Notice that we express thoroughness as a property of the result and not the
plan itself. The reason for this is that, in practice, thoroughness cannot be eval-
uated on a plan unless details of the particular DTL and modelling technology
are known.

This definition of execution plan correctness overlaps with the correctness and
completeness definitions formulated in [11] for triple graph grammar execution
algorithms. This definition, however, allows validation of plans (algorithms) for
declarative, rule-base, transformation languages.

Example Consider the plan in Fig. 5a. Depending on the modelling technology
it is possible that not all SNode elements are contained in a SGraph, in which
case this plan will not be thorough, i.e. there are missing calls from other places
where SNodes can exist. Indeed, a particular language may allow elements to
be created outside rules, e.g. helper methods, in which case we would need to
analyse such methods and add additional calls to consume those elements.



4.1 Performance Evaluation

From the set of correct execution plans, we are interested in selecting the best
plan in terms of performance. In particular, we are interested in execution time
since it is one of the key performance aspects noticed by users. The key factors
that affect execution time are the number of times a rule is invoked and the
binding process.

Consider the plans in Fig. 5, both of which are correct. We are interested in
evaluating their performance, in order to select the optimal one.

(a) Case A (b) Case B

Fig. 5. Validate starvation and thoroughness.

When a rule is invoked from the root, the binding process must query the
candidate models for all elements of each of the input types and produce all
possible combinations. For P parameters and E elements for each parameter
type, each rule is invoked PE times. When a rule is invoked from a rule different
from the root, it obeys a producer-consumer relation and thus a model search
is not required for elements of the types of the producer-consumer relation. For
example, if rule A and rule B have a producer consumer relation via type X, and
A produces one element of type X, then when invoking B from A, we only need
to invoke it once: to consume the new element.

Inspecting the plans in Fig. 5 we can then say that the plan in Fig. 5a has a
total of 2 × PE invocations, because rule n2n is only invoked once per invoca-
tion of rule g2g. On the other hand, the plan in Fig. 5b has a total of 3 × PE

invocations. From this it is possible to conclude that the plan in Fig. 5b would
have a worse execution time than the plan in Fig. 5a.

“The experience with relational system has shown that the main purpose
of a cost model is to differentiate between good and bad executions, in fact, it
is known, from the relational experience, that even an inexact cost model can
achieve this goal reasonably well.” [9]. Thus, our cost function is derived intu-
itively and results show that, to this point, further detailed analysis of execution
is not required. We define the cost of executing a rule r as ϕ(r) = ϕe(r) + ϕi(r),
where ϕe is the execution cost and ϕi is the invocation cost. ϕe depends on the
number of statements and particular semantics of the DTL. However, since all
rules are written in the same language and all rules are invoked in all the plans,
we can assume this cost to be constant: ϕe(ri) = 1. The invocation cost, ϕi(r),



depends on the number of times each rule is invoked and the number of outgoing
calls from the rule (O(r)):

ϕi(r) = X(r)×
∑

r′∈O(r)

(
ϕβ(r

′) + ϕ(r′)
)

(1)

Where X(r) is the number of times a rule is invoked and ϕβ(r) is the cost of
binding the parameters of the invoked rule. In general X(r) = PE , but for static
analysis we can select an arbitray value, e.g. 100, that is sufficiently larger that
the binding cost to discourage the use of loops as we know they affect perfor-
mance adversly. The binding cost ϕβ(r) accounts for the binding of input types
that don’t belong to the producer-consumer relation. For example, when n2n is
invoked from g2g, g2:TGraph can be bound directly from the produced TGraph,
but n1 and g1 must be bound separately. If any of the secondary variables is
derived via a multi-value property, then the binding will also include the cost
of a loop. For static analysis we consider property loops less expensive than all
instances loops (PE) and have defined them as an order of magnitude cheaper.
Finally, the binding cost depends on the underlying modelling technology. For
example in EMF, navigating an undefined opposite relation is more expensive
than a direct one. Since the cost of a rule depends on all the rules it invokes, the
cost of a plan is ϕ(root).

5 Results

The described approach has been implemented in Java, using the JGraphT3

graph library for modelling the Dependency Graph and the Execution Plan
Graph. For the Graph2Graph transformation the complete solution space con-
sists of 240 possible execution plans. We took a sample of 20 plans and executed
the transformation using a test model with 100k elements. For this evaluation,
each graph has the same number of nodes and edges and the model has as many
graphs as a graph has nodes. The idea was that loops for either all instances or
multi-value properties where comparable.

Figure 6 shows the execution time for the 20 sample plans. The series rep-
resent the groups identified by the Honest Significant Differences (HSD) using
the statistical software R. Since the ANOVA[12] test showed that the executions
times are significantly different, the HSD results show a correlation between the
cost function and the execution times.

It is important to note that the difference in execution times between Group
c and the others is around two orders of magnitude. By inspecting the plans with
longer executions times we found that those plans where the cases in which the
binding resulted in derivations that used multiplicity attributes, for example de-
riving nodes from a graph. This sort of derivations insert additional loops during
execution, which translate into higher costs, i.e. higher X(r). The results show
that our cost function is good enough to differentiate good and bad executions.
3 Available online, http://jgrapht.org (viewed April 2016)

http://jgrapht.org


Fig. 6. Execution times for the execution plans sample.

Although the results are statistically significant, the HSD results also suggest
that bigger sample sizes are needed. This is the objective of future work.

6 Related Work

Data dependency analysis has been used for instruction scheduling, constant
propagation [14], parallel processing [16], and others, in compiler optimization,
but most of the literature is related to imperative languages. Control synthesis
for declarative languages is usually made on a statement by statement level [4,
3] following the constraints imposed by the language semantics and observing
data dependencies. However, these approaches do not explore alternative plans
in order to compare them with respect to performance.

In the case of other DTL such as ETL [7] and ATL [6]4 the algorithm pre-
sented in [6] is roughly what is implemented in both execution engines. Rules are
executed in the order they are defined in the DTP in two passes. Once, to cre-
ate all instances of output parameters and a second time where the logic of the
rules is executed. In either case there is no existing analysis or optimizations. In
Prolog, optimizations such as intelligent backtracking[10] use data dependence
analysis to tag previous clauses and provide smarter backtracking choices. How-
ever, this type of optimizations are done at runtime and we are interested in
providing a compile time solution.
4 In their general form ETL and ATL are hybrid transformation languages, i.e. they

mix declarative and imperative semantics, but it is possible to use them purely
declarativly.



Data dependency analysis is also used in the QVTc compiler[15] of the Eclipse
Project. Their use of dependency analysis is more detailed as they also consider
the dependencies generated from the access and modification of attributes. How-
ever, they do not do a solution space search and correctness is not solely achieved
by the generated schedule (execution plan) but also by runtime facilities that, for
example, allow rules to be queued for later execution. Our plans do not require
these runtime support. However, we are aware that without property analysis
there are some transformations for which our plans will not be correct.

An important difference with functional languages is that since there exists
an explicit relation between functions (i.e. one function is computed by invoking
a set of other functions), there is an initial invocation structure and the opti-
mization problem is related to finding the correct set of function invocations to
obtain a result as opposed to finding an order in which to invoke these func-
tions. The same can be said for declarative queries languages. In the case of
DryadLINQ, a declarative queries system, in [13] these relations are exploited in
order to fuse them into optimized loops during code generation.

As stated previously, we are interested in providing optimizations based on
static analysis where the execution plan is determined at compile time. In [9] and
optimization for the Logic Data Language (LDL) is presented. The focus on op-
timization for the Horn clause queries by first, identifying the solution space and
second, deriving a cost model. In our approach we follow a similar methodology.
Their solution space consists of binary expression trees that represent the Horn
clauses and thus it is not directly applicable to DTLs where there is no logic
relation between rules. For the cost function, they assume that each operation
there is a predefined list of methods to calculate the cost. The reason for this
is that these costs have been previously determined in the domain of relational
query languages. Part of our research is related to deriving such cost functions.

Data dependency analysis is also used in [5] for deriving test cases for com-
plete coverage testing in TGG. However, the data dependencies are per pattern,
as opposed to individual types. In our case dependencies are per type, and thus
one rule will depend on rules that produce all or some of the consumed types.
This results in more complex dependency graphs.

In the domain of graph transformations, [11] presents an optimization to
TGG execution called Precedence TGGs. They identify data dependencies be-
tween rules, but use this information to topologically sort the nodes in a source
graph (model) as opposed to defining an execution order for the rules. This is due
to the fact that TGG execution is defined by source graph traversal as opposed
to rule traversal. Our complete solution space exploration shows that there are
different alternatives to execute the same transformation and our approach can
be used as a base to identify the optimal one. In [11] there is no mention of
the different execution alternatives and if the proposed algorithm results in an
optimal (sufficiently good execution) for a given TGG.



7 Conclusions

In this paper we proposed a novel model to represent execution plans of declar-
ative model transformations and presented how the complete solution space of
execution plans for a given transformation program can be constructed. Further,
we introduced a method for determining the correctness of execution plans based
on data dependency analysis. We showed how the correctness criteria can be used
to synthesise efficient execution plans that guarantee correct transformation ex-
ecution while minimizing the number of rule invocations. Finally, we presented
how predicted runtime performance could be evaluated by computing the cost of
the execution plans and validated the results by execution a sample of the plans
in the execution space. The ideas for constructing the complete solution space
can be incorporated into a search-based algorithm that would result in a suffi-
ciently good solution without requiring a complete solution space exploration.
These contributions were presented in a language-agnostic level that facilitates
its incorporation to other declarative model transformation languages.
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