
Integrating UML/OCL Derived Properties into
Validation and Verification Processes

Frank Hilken1, Marcel Schuster1, Karsten Sohr1,2, and Martin Gogolla1

1 University of Bremen, Computer Science Department, 28359 Bremen, Germany
2 Center for Computing Technologies (TZI), 28359 Bremen, Germany

{fhilken,maschu,sohr,gogolla}@informatik.uni-bremen.de

Abstract. UML and OCL are rich languages offering a multitude of
modeling elements. They provide modelers with simple and effective
tools to express and visualize models, but their complex semantics are a
great challenge for validation and verification processes, which are often
limited by their underlying logic. On the basis of a network topology
example model, describing lower physical and logical network levels, we
demonstrate applications of derived attributes and associations that help
checking network security aspects. This includes finding inconsistencies
in an existing network, directing to potential configuration errors and
property evaluation, e.g. reachability between components within the
network. In addition, a transformation of derived properties into rela-
tional logic is presented to enable the use of a modern instance finder for
further verification tasks and generation of valid networks configurations.

Keywords: Validation and Verification · Derived Property · Network
Security · Tooling

1 Introduction

The management of modern network infrastructures has become a complex task
in which an increasing number of requirements have to be considered. Besides
availability concerns, also the important network security is a permanent require-
ment in increasingly growing corporate intranets. Models can help to keep track
of the network and validate the consistency, but they mostly consider higher
abstraction levels. In the OSI model (Open Systems Interconnection, [11]), a
standard for communication in computer networks based on seven layers, the
aforementioned models reside on the third layer as the lowest layer.

We present a UML/OCL network topology model based on OSI starting with
especially the two lower layers. The model allows the representation of networks
on the OSI layers 1 and 2. With the model, existing network configurations can
be validated for consistency. Besides invariants ensuring consistency, the model
is enhanced with derived properties, to abstract from complex network relations
and further ensuring valid system states. We instantiate the model with the
configuration of the data center of the University of Bremen and check it for
consistency as well as for other properties. Furthermore, instances of the model

are useful network documentations and can be used to interactively maintain
the configuration with immediate feedback of the model’s consistency.

Using a general UML/OCL validation and verification tool, the USE tool
(UML-based Specification Environment, [8]) and its instance generator based
on relational logic [13,12], additional verification use cases are demonstrated. In
particular, the completion of partial system states, i.e. taking a partial (inconsis-
tent) system state and complete it into a valid, consistent state, is used to allow
network administrators to specify key data of their networks as well as security
requirements and have the rest of the details generated to form a valid network
that employs all requirements. The model also allows to check whether certain
requirements, e.g. reachability between components, can be realized at all given
a partial model as the basis.

In order to employ the derived properties with our instance generator, the
USE model validator, a transformation of the semantics of derived properties into
relational logic is presented. While derived properties can already be checked,
using model transformations into simpler UML/OCL descriptions [10], the di-
rect transformation in the tool causes less manual work and is more efficient,
especially in regards to the search space. The transformation allows well-known
verification use cases to be applied on models with derived properties.

The paper is structured as follows. Section 2 briefly introduces preliminary
concepts used in the paper. Section 3 describes a network topology model able to
analyze the lower connection layers of networks. Then, Section 4 demonstrates
use cases how the derived properties help validating a real-life network and how
the model can be further used to generate secure networks. Section 5 explains the
transformation of derived properties into relational logic for usage in tools. Sec-
tion 6 discusses further ideas regarding derived properties and tooling that were
collected during the work. Finally, Section 7 concludes and outlines future work.

2 Preliminaries

2.1 Network Security

One task of network security administrators is to prevent the unhindered spread-
ing of malware in corporate intranets, which use insecure connections to attack
security-related network components like servers. This threat is much higher
when an attacker comes from the inside or has already injected malware into the
corporate intranet using known security vulnerabilities.

To obtain a better understanding of the computer network of the corporate
intranet, it is important for network administrators to carry out an infrastructure
analysis. Additionally, it should be possible to collect this information about the
network infrastructure automatically. In particular, this is relevant for protection
from inner threats. These attacks are often performed on the lower network layers
of the OSI model (Open Systems Interconnection, [11]) (layer 1 and layer 2) as
an attacker has physical access to the network in this case.

The importance of performing an infrastructure analysis in addition to a
physical and logical network topology documentation is also stressed in the Ger-

man “IT Baseline Protection”, a German standard for IT security management
in organizations [4]. However, the task of generating a visual representation of
the physical and logical topology is often difficult to fulfill. Depending on the
current configuration of the network components, the logical topology might
differ significantly from the physical topology.

Responsible for these difficulties are technologies from network standards
such as IEEE 802.1AX (Link Aggregation) and IEEE 802.1Q (Virtual Bridged
Local Area Networks). They allow network administrators to bundle physical
links into one big logical link resulting in advantages regarding bandwidth, re-
dundancy and partitioning the physical topology into multiple logical segments.
Despite being widely used in common corporate intranets and corporate data
centers, there is no known tool support for visualizing these kind of low-level
functions in network topologies. Such a tool, however, would greatly support the
process of security management in computer networks.

Our experience that we gained while carrying out our research project has
shown that the network configuration and documentation are often generated
and maintained manually. This leaves a lot of space for mistakes. A promising
approach to improve on this situation is to create a UML/OCL network model
enabling the analysis with validation and verification tools such as USE and the
USE model validator.

There are also other works that model computer networks in a formalism and
allow an administrator to query information, e.g. reachability queries. For exam-
ple, the Interconnected Asset Ontology (IO) models computer networks with the
help of ontologies and uses SPARQL for querying the network description [3,2].
The UML/OCL network topology model presented in this paper is designed
as an alternative to the ontology, to discover new possibilities with UML/OCL
tools. IO’s feature pool is larger due to the longer research time among other
reasons, but the new model presents advantages like the visually oriented tool-
ing and the generation of networks using instance finders. In another work, a
Prolog-based prototype for representing and reasoning about network descrip-
tions is presented [5]. PRESTO allows configuration management for large-scale
networks by providing generalized configlets by which concrete configurations
for network devices can be created [7].

2.2 Derived Properties in UML/OCL

Derived properties in UML and OCL allow the modeler to represent conditions
that are implicitly in the model and can be derived using existing information
in system states [9]. These properties are defined on classes from the model,
either as attributes or role ends, and do not need to be instantiated but rather
are calculated using given OCL expressions. These so called derived expressions
are used to describe attribute values and relations (associations) between classes
in the form of links in a system state. Finally, the number of generated links
in a system state must conform to the defined multiplicities of their respective
derived association, allowing to put additional constraints on the model.

Person

gchild
/gparent

child
parent

Person2:Person

Person4:PersonPerson1:Person

Person3:Person

Fig. 1. Class diagram and partial object diagram of simple family tree model.

Definition 1 (Derived Expression). Derived expressions are functions with
the signature:

derived : p1 × . . .× pn → T.

The inputs p1 to pn are scope parameters that can be used in the OCL expression.
The number of parameters is determined by the model element. Derived attributes
have exactly one parameter named self that has the type of their respective class.
Derived n-ary associations (including binary associations, n = 2) have exactly
one derived role and n − 1 parameters, one for each non-derived role end to
provide proper scope. The type of the output T is also determined by the model
elements. For derived attributes it is the type of the attribute and for derived
associations it is the type of the associated class of the derived role end, or a set
thereof if the multiplicity is > 1.

Example 1. A simple family tree model might just consist of the class Person
and a parent-child association (see Fig. 1 on the left). These model elements
are enough to specify a family tree, but they also contain a lot more information
than is stated. For example, one could add a derived association, which displays
the grandparents of each person. The definition of such association could look
as follows:
association Grandparents between

Person [*] role gparent derived = self.parent.parent→asSet()
Person [*] role gchild

end

The derived role gparent can be identified in the class diagram by the for-
ward slash in front of the rolename. Figure 1 on the right shows a partial object
diagram with four persons – parents at the top, children towards the bottom.
The aggregations show parent-child links and the dashed lines represent de-
rived grandparent relations. The persons 1, 2 and 3 are directly chained mak-
ing Person1 a grandparent of Person3. The object diagram also states that
Person4 is a grandparent of Person3, however there is no connection visible
supporting this structure. This is due to the fact that a fifth person – not shown
in the partial diagram – is a child of Person4 and a parent of Person3. Even
though the required objects for the derived link are hidden, the link itself is still
visible. Herein lies a strength of the derived properties, being able to hide com-
plex structures without losing information. For the visual representation, this
greatly helps to comprehend models.

2.3 USE Tool and Model Validator Plugin

The USE tool (UML-based Specification Environment, [8]) is a modeling tool
capable of validating and verifying UML models enhanced with OCL. USE sup-
ports several diagram types (class diagram, object diagram, sequence diagram,
state machine, communication diagram) with a well-defined subset of UML and
a near complete support of OCL. USE allows the interactive instantiation of sys-
tem states while it is continuously checked for validity. Any violation of model
invariants or multiplicities (including the ones from derived associations) is re-
ported and can be analyzed in detail to find the inconsistent parts using several
in-built (graphical) techniques allowing detection and correction of errors.

The USE model validator plugin is an instance finder for UML/OCL models
that generates valid system states within given bounds. This bound configuration
determines the number of objects and links as well as the domains of all types
used by the model validator. These bounds, together with the UML structure
and OCL constraints, are transformed into the relational logic of Kodkod [12,13]
to be further transformed into a SAT problem and solved.3 The solution instance
is transformed back into a UML system state as an object diagram. In particular
the capabilities of taking a partial, possibly invalid system state given by the
modeler and completing it to a valid system state conforming the UML/OCL
model will be important later.

3 Network Topology Model

To have a proper representation of network topologies, the following network
topology model is oriented towards the OSI (Open Systems Interconnection)
network model [11], which describes communication in computer networks in
seven layers. To fill the gap of models for lower network layers, for now the
network topology model only considers the OSI layers 1 and 2. The OSI layers 3
to 7 can be added later, but are not further discussed. The layers 1 and 2 of the
OSI network model are defined as follows:

1. Layer 1 is the physical layer which specifies the transportation medium with
its connectors and electrical resources. Furthermore it specifies how the bits
are transferred to the receiver. For our example, this layer describes the
physical cabling in between network components (e.g. routers and servers).

2. Layer 2 is the data link layer which separates the bit stream of layer 1 into
several logical frames and adds data like checksums. Ethernet is the most
popular example for a specification defining layer 2 of the OSI model.

The network topology model (see Fig. 2) consists of three base classes:
NetworkComponent, Interface and Link. The idea is that a computer network
consists of network components having interfaces. The interfaces are in turn con-
nected to other interfaces using links. These classes are part of the abstraction
layer on which the OSI layers build upon. Modeling the association between the
3 A list of all supported UML/OCL features in the tool is compiled in Appendix A.

Interface

name : String

SimpleLayer2Interface

AggregatedLayer2Interface

Layer2Link

peerLink : Boolean

/linkRedundancy : Integer

/chassisRedundancy : Integer

minLinkRedundancy : Integer

minChassisRedundancy : Integer

Layer1Interface

Layer2Interface

description : String

PVID : Integer

VID : Set(Integer)

NetworkComponent

name : String
Link

Layer1Link

*

derivedLayer1Connection

*

/derivedLayer1Interface *

derivedLayer1Interface

derivedLayer2Interface *

/derivedLayer1Link 1..*

derivedLayer1Link

derivedLayer2Link *

interface

*

networkComponent

1..*

layer1Interface0..1

layer2Interface*

layer1Link

0..1

layer1Interface

2

layer2Link

0..1

layer2Interface

2
simpleLayer2Interface 1..*

aggregatedLayer2Interface 0..1

Abstraction layer

OSI layer 1

OSI layer 2

OSI layers 3 and up...

Fig. 2. UML class diagram representing a layered OSI-like network topology model.

classes Interface and Link with unions and subsets would be a nice approach
in this model, but unfortunately this UML feature is not yet supported by the
USE model validator (see Appendix A).

The specialization classes Layer1Interface and Layer2Interface represent
the OSI-like interface layering. It is important to state here that the specialized
interfaces can only be linked on the same layer. Thus a Layer1Interface can
only have a Layer1Link while Layer2Interface can only have a Layer2Link.
The multiplicity of “0..1” between Interfaces and Links results from the fact
that interfaces don’t require links to exist. The model contains further elements
to handle the standards IEEE 802.1AX and IEEE 802.1Q for managing link
aggregations and VLANs. Each layer has dependencies to the one below it and
an extension of the model to support OSI layer 3 and above is indicated but not
further pursued here.

The model contains two derived attributes in the class Layer2Link. The val-
ues of these attributes cannot be set manually but are calculated automatically
using an OCL expression. The attributes represent the following information:

linkRedundancy This attribute computes on how many layer 1 links this
layer 2 link depends. This is especially relevant when using link aggrega-
tion, where multiple physical connections are aggregated to one logical link.
Any value greater than one represents redundancy where one physical link
can fail while not affecting the availability of the layer 2 connection.

chassisRedundancy This attribute calculates the chassis redundancy of the
given layer 2 link which may indicate single points of failure in the network

topology. Due to the existence of multi-chassis systems, it is possible to cre-
ate aggregated multi-chassis layer 2 interfaces as well which are distributed
across the multi-chassis network components [2]. Any value greater than
one represents redundancy where one network component can fail without
affecting the availability of the layer 2 connection.

Using the attributes minLinkRedundancy and minChassisRedundancy of the
class Layer2Link it is possible to define redundancy requirements which are
useful for the completion of partial system states using the USE model validator
later in Sect. 4.2. In addition to the aforementioned derived attributes, this
model contains three derived associations:

derivedLayer1Connection This derived association links two network com-
ponents, when they have at least one Layer1Link interconnecting them.
This information is very useful when viewing layers in isolation, e.g. the
information is preserved even when all layer 1 objects (Layer1Interface,
Layer1Link) are hidden in an object diagram.

derivedLayer1Interface Layer 2 interfaces can either be directly or indirectly
associated with layer 1 interfaces. An AggregatedLayer2Interface is as-
sociated to a SimpleLayer2Interface which is in turn directly associated
with a Layer1Interface. As a result, the aggregated layer 2 interface is
associated with the layer 1 interface using transitivity characteristics.

derivedLayer1Link Using this derived association, it is possible to show which
logical layer 2 links are transmitted over an existing layer 1 link. This derived
association results from the association of the layer 1 and layer 2 interfaces.
The existence of a derived layer 1 link is mandatory and is ensured using an
adequate multiplicity (1..*). This ensures valid layer 2 linking via a con-
straint enforced by a derived association and a violation of the multiplicity
indicates invalid network configurations.

In this network topology model it would be possible to define far more de-
rived associations, but this is not necessarily reasonable. The described derived
attributes and associations are useful for the inspection of large system states,
because of the calculation and visualization of implicit existing information that
is otherwise not visible as easily. Additionally, the modeler can hide big parts of
the data without losing important information (see Sect. 4.1).

To further ensure valid system states, the network topology model contains
20 class invariants which check advanced structural dependencies, e.g. associated
layer 1 and 2 interfaces linking to the same network component. Furthermore,
there exist class invariants that verify the integrity of the model which includes,
for example, the check for valid VLAN configurations of linked layer 2 interfaces.
Another example is stated in the following state invariant:

inv AssociatedLayer1InterfacesAreProperlyConnected:
self.getOpposite() <> null implies
self.getOpposite().getLayer1Interfaces()

→includesAll(self.getLayer1Interfaces().getOpposite())

The operation getOpposite() is defined for every interface and returns the
corresponding interface connected across an instance of the class Link. The pre-
sented state invariant is defined in the context of AggregatedLayer2Interface
and ensures that the depending layer 1 interfaces of the linked aggregated layer 2
interfaces are properly connected. This prevents, for example, inconsistent ca-
bling and therefore not fully working and redundant link aggregation.

4 Example Use Cases for Derived Properties

The following two sections present two possible and realized use cases for the
described network topology model. The model can either be used to validate
and visualize given configurations of network components or create and complete
given partial system states towards an automated generation of configurations.

4.1 Validation of Existing Network Configurations

The network topology model described in Section 3 can be used to validate and
visualize the configuration of network components. As a real-life example we
chose four Cisco network switches which are placed in the data center of the
University of Bremen. These switches belong to the core network meaning they
are among the most central components of the network topology [6].

These core network components have high requirements regarding bandwidth
and redundancy, because the failure of one component or link must not affect
the availability of the whole data center [6]. In addition to the redundancy con-
figuration the components contain a lot of configurations regarding the logical
network design using VLANs. This is the reason why these core components have
a lot of physical and logical interfaces which are hard to maintain manually. The
configuration of each component consists of more than 3.000 Cisco-specific con-
figuration commands provided in plain text files.

Using parts of the provided configuration files of the data center, it is possible
to extract relevant data out of the static configuration information and build a
system state from it. The emerging object diagram consists of 4 network com-
ponents, 2.398 interfaces, 17 link instances with a total of 3.737 links and 170
derived links (see Fig. 3). Figure 3 also shows the evaluation of the invariants
for the generated object diagram satisfying all class invariants. The low amount
of layer 1 and layer 2 links comes from the fact that the configuration of neigh-
boring network components was not processed. Without this information it is
not possible to certainly create links, but VLAN properties can be checked on
interface level. The present links model the interconnection of the four Cisco
switches.

Beyond the validation using the defined multiplicities and class invariants,
it is possible to do more security related analyses with the system state. It is
possible to check whether two network components are in the same “broadcast
domain”, i.e. can reach each other by sending broadcast frames on layer 2. This
logical segregation can be checked by querying through the linked layer 2 inter-
faces respecting the VLAN configuration of each interface. Extending the model

Fig. 3. Object count, link count and class invariants of an example object diagram of
four interconnected network switches in the University of Bremen data center.

with OSI layer 3 would allow further security property analyses of IP routing
and firewalls.

Sometimes it is not necessary for the modeler to have all information visible.
With the help of the described derived associations, it is possible to hide every
object of network layer 1. The resulting object diagram in Figure 4 shows only
the logical layer 2 topology, which interconnects the four switches. Despite hav-
ing 12 interconnecting layer 1 links, the logical layer 2 topology looks far smaller
and clearer, because of the two aggregated multi-chassis layer 2 interfaces which
are distributed across two network components each. Having this complex con-
figuration visually present is not only useful for documentation purposes, but
helps network administrators with the comprehension and further maintenance
of the network topology.

The derived association derivedLayer1Connection is represented by the
dashed lines in Figure 4 which states that the four switches are creating a meshed
network topology (the diagonal links continue behind the layer 2 link, connect-
ing the network components in the opposite corners). The responsible derived
association for these links is defined as follows:
association derivedLayer1Connection between

NetworkComponent[*] role sourceNetworkComponent
NetworkComponent[*] role destinationNetworkComponent derived =

self.getLayer1Interfaces().getOpposite().networkComponent→asSet()
end

The neighbored (or destination) network components are queried through
the associated layer 1 interfaces and layer 1 links. Due to the symmetry of the
layer 1 links, every destination network component acts as a source network
component as well, which causes two links per network component pair.

AggregatedLayer2Interface1:AggregatedLayer2Interface

name='port-channel10'
description='vPC 10; Uplink zu cisco-7000-[ab]'
PVID=1
VID=Set{10,11,12,13,14}

NetworkComponent4:NetworkComponent

name='cisco-7000-b'

Layer2Link4:Layer2Link

peerLink=false
/linkRedundancy=4
/chassisRedundancy=2
minLinkRedundancy=1
minChassisRedundancy=1

NetworkComponent2:NetworkComponent

name='cisco-5500-a-2'

NetworkComponent3:NetworkComponent

name='cisco-7000-a'

AggregatedLayer2Interface8:AggregatedLayer2Interface

name='port-channel10'
description='trunk; => cisco-5500-a-[12]'
PVID=1
VID=Set{10,11,12,13,14}

NetworkComponent1:NetworkComponent

name='cisco-5500-a-1'

Fig. 4. Object diagram of four interconnected network switches in the University of
Bremen data center with hidden layer 1 objects. With the derived properties, all nec-
essary information is visible.

4.2 Generation of Network Configurations

The network topology model cannot only be used to validate and visualize the
configuration of network components. It can also be used to create possible
system states out of a given partial system state with the USE model validator.

The frame in Figure 5 marks the objects that were used as input for the
model validator. The modeler requires two network components redundantly
connected using a layer 2 link with aggregated layer 2 interfaces. With the at-
tribute minLinkRedundancy it is enforced that at least two layer 1 links have
to cover the layer 2 link. The constraints defined with the attributes affect the
derived properties and these in turn affect the overall completion of the partial
system state.

With the UML/OCL model and this partially given object diagram, the
model validator is now capable of generating the missing layer 1 and 2 objects
and links using given search boundaries in order to fulfill all model constraints
including multiplicities. The overall translation time of the partial system state
shown in the frame in Fig. 5 takes only 360ms in addition to a solving time of
10ms. Further security requirements could be employed before the completion
to enforce further restrictions for the system state. In this example, the concrete
component names were not important, hence the random strings like “string5”
or “string7”. With a more sophisticated model validator configuration, more
meaningful interface names like “Ethernet1/1” can be generated as well.

sl2i1:SimpleLayer2Interface

name='string5'
description='string6'
PVID=1
VID=Set{10}

sl2i4:SimpleLayer2Interface

name='string6'
description='string7'
PVID=1
VID=Set{10}

layer1link1:Layer1Link

l2l:Layer2Link

peerLink=false
/linkRedundancy=2
/chassisRedundancy=1
minLinkRedundancy=2
minChassisRedundancy=1

sl2i2:SimpleLayer2Interface

name='string5'
description='string7'
PVID=1
VID=Set{10}

layer1interface2:Layer1Interface

name='string5'
layer1link2:Layer1Link layer1interface1:Layer1Interface

name='string8'

sl2i3:SimpleLayer2Interface

name='string6'
description='string7'
PVID=1
VID=Set{10}

al2i1:AggregatedLayer2Interface

name='port-channel10'
description='desc'
PVID=1
VID=Set{10}

layer1interface4:Layer1Interface

name='string9'

al2i2:AggregatedLayer2Interface

name='port-channel10'
description='desc'
PVID=1
VID=Set{10}

nc1:NetworkComponent

name='ComponentA'

layer1interface3:Layer1Interface

name='string6'

nc2:NetworkComponent

name='ComponentB'

Fig. 5. Automatic generation of the missing layer 1 connections using the USE model
validator with a given logical layer 2 topology (blue frame).

To think one step further, this system state can be used to generate the Cisco-
specific configuration commands for the network components using a model-to-
text transformation. Network administrators can model complete network struc-
tures or just the logical layer 2 topology as a partial system state, completed by
the model validator, as shown in the example. A model-to-text transformation
would then generate the Cisco-specific configuration commands. With this work-
flow, it would be possible to create consistent and valid configurations out of the
network topology documentation which nowadays is usually done the other way
around. Ultimately, this allows network administrators to focus on the higher,
more abstract layers of the network infrastructure, knowing that the required
lower layers will be generated automatically, fulfilling all security and availability
requirements.

5 Transformation into Relational Logic
In order to use derived attributes and associations in the USE model valida-
tor, their semantics have to be translated into relational logic [12,13]. One of
the challenges is that in the SAT-based instance finding there are no concrete
objects on which the expressions can be evaluated, but rather the search space
is manipulated to generate valid system states. This is also the reason for a
limitation that applies to both features. The model validator does not support
recursive query operations, because it is unknown how often the operation needs
to be unrolled and for the same reason does not support recursive derived expres-
sions. The extensive OCL support of the model validator is reused to transform
the actual derived expression and the following sections describe the rest of the
transformations.

5.1 Derived Attributes

Derived attributes are the simpler of the two properties to transform, since they
do not employ further constraints on the model unless they are explicitly men-

tioned in model invariants. They are very similar to query operations but are
represented as attributes in object diagrams. For this reason, the model valida-
tor does not transform the attribute itself, but rather substitutes all access to
the attribute value with the derived expression on the fly during the transfor-
mation of OCL expressions. As a result, an expression <expr>.attribute is
transformed into derivedattribute(<expr>), where <expr> is an arbitrary OCL
expression of the type of the derived attribute passed as the parameter to the
derived expression function from Definition 1. The resulting expression is then
transformed normally by the existing OCL transformation algorithm.

The advantage of this approach is that the derived attributes are not di-
rectly part of the model and therefore do not need to be specified in the problem
bounds, meaning it does not extend the search space. The actual value is deter-
mined once the solution instance is transformed back into a USE system state,
at which point USE evaluates the derived properties.

5.2 Derived Associations

The transformation of derived associations is more complex for two reasons:

1. Derived associations can be navigated in both directions, requiring that the
derived expression can be applied backwards. However, derived expressions
may be arbitrary OCL expressions that are not required to be bijective.

2. The semantics of derived associations put further constraints on the model
that have to be fulfilled in order to have a valid system state. In particular,
the number of calculated links must conform their multiplicities.

Navigating towards a derived role is similar to how derived attributes work.
The derived expression function can be applied to the current object resulting
in the linked objects, effectively simulating the navigation. However, there is no
way of reversing an OCL expression to make it suitable for the navigation in
the opposite direction. For the backwards navigation, all possibilities have to be
considered and filtered for the ones that are applicable.

Example 2 (Role Navigation). Consider this simple derived association:
association AB between

A [2] role a
B [1..4] role b derived = <OCL expression>

end

The navigation from A to B is achieved by applying the derived expression. The
navigation from B to A, e.g. by an expression self.a in an invariant of B, has to
be calculated using all objects of type A. The expression self can be substituted
with any arbitrary OCL expression of the correct type. In OCL the navigation
expression would be:
A.allInstances()→select(a | derived(a)→includes(self))

In relational logic, this same semantics is achieved with a comprehension:

{a : one A | self ∈ derived(a)}.

Note that the relational logic encoding does not have single object values.
These are represented as a set containing one element. Therefore, multiplicities
with an upper bound of 1 do not need special treatment.

The second challenge, transforming the semantics of multiplicities, is solved
with a constraint for every association end, which is added to the model. Roles
with non-restricting multiplicities 0..* can be ignored.

Example 3 (Multiplicity Constraint). For the previous association, the multiplic-
ity constraints formulated in relational logic are as follows:

(all a : one A | #derived(a) ≥ 1 ∧#derived(a) ≤ 4) ∧ // mult. role b
(all b : one B | #{a : one A | b ∈ derived(a)} = 2) // mult. role a

For n-ary associations both transformations are similar, however more pa-
rameters need to be bound. Here the role navigation for n-ary associations is
exemplified, but the changes to the multiplicity constraints are similar.

Example 4 (Ternary Navigation). Adding a third role c to the previous associ-
ation changes the formula for the navigation from B to role a to the following:{

a : one A
∣∣∣ (some c : one C︸ ︷︷ ︸
bind additional parameters

| self ∈ derived(a, c)
)}

.

6 Future Ideas for Derived Properties
During the development and work with the derived properties, we came across
further ideas regarding the tooling and features that are not yet supported by
the UML and OCL standards.

6.1 Discussion of Tool Support

The system state completion use case from Sect. 4.2 uses partial system states
to provide key data for a network infrastructure that is then completed by the
model validator to a valid system state showing all components and wiring. This
partial state fixes key data of the final result including objects, links and also at-
tribute values. However, these attribute values include derived attributes as well,
which are evaluated on the partial system state that might not reflect the intend
of the modeler. For this reason, the derived attribute values are ignored when
transforming the partial system state in the model validator. In the USE tool,
derived properties are calculated model elements that automatically refresh their
values when necessary. The implementation does not allow to manually assign
values at all. Also the model validator plugin does not account for this situa-
tion. In the current implementation, where derived properties are not explicitly
bounded, also the configuration is no help. Therefore, in the current state it is
not possible to specify exact values for derived properties in partial system states
as it is for regular properties. However, this feature is very useful and should be
supported by tools that deal with derived properties, for derived attributes and
associations alike.

6.2 Derived Classes and Association Classes

Already in 2003 a method was presented to define derived classes for database
views using tuple-typed derived attributes [1]. There, derived classes are mod-
eled as a derived attribute of type Set(Tuple(...)), where the contents of the
tuple represent attributes on the derived class. These attributes of the derived
class must be derived themselves. However, the representation of these objects
within an attribute does not have the same features as real objects, e.g. the op-
eration allInstances() cannot be invoked on this derived type. Thus a nicer
integration is desired, but the concepts already exist and show the feasibility
and applications.

Building upon the idea of derived classes, also derived association classes
come to mind. The instances are defined by a derived role like regular derived
associations, but allow derived attributes to be defined on them, similar to the
derived classes. These derived classes can be used as the context for model invari-
ants in order to employ constraints. These new features are a straight forwards
combination of existing elements in the standards and reuse their components.
Adding them would complete the support for derived properties in UML/OCL.

7 Conclusion and Future Work
We have presented a network topology model in UML/OCL to describe the lower
OSI layer connections of network components. Derived attributes and associa-
tions are employed to further constraint the model and improve visual repre-
sentations, providing a better understanding. With this model it is possible to
validate given real-life networks for consistency as demonstrated with parts of
the data center of the University of Bremen. Ideas for a model transformation
from system states to network configurations were sketched.

Additionally, the support for derived properties was added to the USE model
validator in order to verify further properties of the model and to increase the
capabilities of the tool itself. In particular, a way of generating network structures
from key data points was presented. A transformation of the semantics of derived
properties into the relational logic of Kodkod was introduced.

Future work can concentrate on many aspects. The network topology model
can be extended with higher OSI layers like layer 3 (IP) to take into account
firewall rules as well. The USE model validator plugin can be improved by adding
more features of the UML, e.g. union and subsets association end properties,
two other derived features that are not based on derived expressions but rather
the inheritance hierarchy. They improve the abstraction features in the network
topology by automatically deriving connections in the abstract layer from lower
hierarchy level links. Finally, the performance of the tool when generating larger
networks needs to be investigated further.

Acknowledgement. We thank Henk Birkholz for the helpful discussions about
the UML network topology model and Markus Germeier for providing the con-
figuration files of the University of Bremen data center.

References

1. Balsters, H.: Modelling Database Views with Derived Classes in the UML/OCL-
Framework. In: Stevens, P., Whittle, J., Booch, G. (eds.) The Unified Modeling
Language, Modeling Languages and Applications, UML 2003. LNCS, vol. 2863,
pp. 295–309. Springer (2003)

2. Birkholz, H., Sieverdingbeck, I.: Supporting Security Automation for Multi-chassis
Link Aggregation Groups via the Interconnected-Asset Ontology. In: Ninth In-
ternational Conference on Availability, Reliability and Security, ARES 2014. pp.
126–133. IEEE Computer Society (2014)

3. Birkholz, H., Sieverdingbeck, I., Sohr, K., Bormann, C.: IO: An Interconnected As-
set Ontology in Support of Risk Management Processes. In: Seventh International
Conference on Availability, Reliability and Security, ARES 2012. pp. 534–541. IEEE
Computer Society (2012)

4. Bundesamt für Sicherheit in der Informationstechnik: BSI Standard 100-2
IT-Grundschutz Methodology, Version 2.0 (2008), https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_
e_pdf.pdf

5. Burns, J., Cheng, A., Gurung, P., Rajagopalan, S., Rao, P., Rosenbluth, D., Suren-
dran, A., Jr, D.M.: Automatic Management of Network Security Policy. DARPA
Information Survivability Conference and Exposition, 2, 1012 (2001)

6. Cisco Systems, Inc.: Campus Network for High Availability Design Guide
(May 2008), https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/
Campus/HA_campus_DG/hacampusdg.pdf

7. Enck, W., Moyer, T., McDaniel, P., Sen, S., Sebos, P., Spoerel, S., Greenberg, A.,
Sung, Y.W.E., Rao, S., Aiello, W.: Configuration Management at Massive Scale:
System Design and Experience. IEEE J.Sel. A. Commun. 27(3), 323–335 (Apr
2009)

8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

9. Hamann, L., Gogolla, M.: Endogenous Metamodeling Semantics for Structural
UML 2 Concepts. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.J.
(eds.) Model-Driven Engineering Languages and Systems, MODELS 2013. LNCS,
vol. 8107, pp. 488–504. Springer (2013)

10. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: From UML/OCL to Base Models:
Transformation Concepts for Generic Validation and Verification. In: Kolovos, D.S.,
Wimmer, M. (eds.) Theory and Practice of Model Transformations, ICMT 2015.
LNCS, vol. 9152, pp. 149–165. Springer (2015)

11. ITU-T – International Telecommunication Union: X.200 : Information technology
– Open Systems Interconnection – Basic Reference Model: The basic model (July
1994), http://www.itu.int/rec/T-REC-X.200-199407-I

12. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven Engineering
Languages and Systems, MODELS 2012. LNCS, vol. 7590, pp. 415–431. Springer
(2012)

13. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer (2007)

A USE Model Validator supported UML/OCL Features
Unified Modeling Language (UML)

Class features
3 Class
3 Abstract Class
3 Inheritance
3 Multiple Inheritance
3 Attribute

3 Derived Value new in this paper
7 Initial Value

3 Enumeration
3 Invariant

Association features
3 Binary Association
3 N-ary Association

Aggregation limited support of cycle freeness (otherwise 3)
Composition limited support of cycle freeness (otherwise 3)

3 Multiplicity
3 Association Class
3 Derived Association End new in this paper
7 Qualified Association
7 Redefines, Subsets, Union

Operation features
3 Query Operation

3 Parameter
3 Return Value
7 Recursion

7 Operation Call (non query) checking behavior possible via filmstripping
7 Parameter x with filmstripping
7 Return Value x with filmstripping
7 Pre-/Postcondition x with filmstripping

7 Nested Operation Call
Object Constraint Language (OCL)

OCL types
3 Boolean 3 Integer 3 Class Type
String Real 7 UnlimitedNatural

3 Set 7 Bag 7 Sequence
7 OrderedSet 7 Nested collections

OCL operations
3 Comparison Operators 3 Boolean Operations 3 Integer Operations
String Operations 7 substring 7 concat

3 <Class>.allInstances 7 <Assoc>.allInstances 3 size
3 isEmpty/notEmpty 3 includes/excludes 3 including/excluding
3 forAll/exists 3 select/reject 3 one
3 isUnique 3 union/intersection any
3 collect 3 closure 7 iterate
3 toString sum 3 oclIsType/KindOf
3 selectByType/Kind 3 oclAsType 7 oclType

3 supported element – 7 unsupported element – partially supported element

