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Abstract. Many model-driven engineering workflows take the existing
code of a system as an input. Some of these include validation and ver-
ification, software modernisation or knowledge extraction. Current ap-
proaches take the code and produce a standalone model, instead of treat-
ing the code itself as a model and navigating through it on demand. For
very large codebases this can be quite expensive to produce, and the
resulting model can be too large to suit the simplest monolithic file-
based stores. In this work we propose reusing a model that is already
incrementally built for us and supports fast lookups: the internal indices
maintained by our integrated development environments for code analy-
sis and refactoring. In particular, we show an Epsilon driver that exposes
the Eclipse JDT indices of one or more Java projects as a model, and
compare its performance and usability against MoDisco for validating
Java code with regards to a partial UML model.

1 Introduction

The ability to query codebases (e.g. written in languages like Java and C#) at the
abstract syntax level – as opposed to the concrete syntax level which is supported
by standard textual search facilities – is essential for tasks such as program com-
prehension, analysis, quality assessment, reverse engineering and modernisation.
To query such a codebase using contemporary EMF-based model management
languages (e.g. ATL or Acceleo), it first needs to be transformed into an EMF-
compatible representation using tools like MoDisco [1]. This practice presents a
number of issues. First, as none of the existing code-to-model tools are incremen-
tal, after any changes to the codebase, the latter needs to be re-transformed into
an EMF representation, which can be a rather time consuming task as the code
grows in size. Moreover, for queries that do not need to navigate the complete
abstract syntax tree, such a transformation can be wasteful.

To address these issues in this paper we present a more lightweight and per-
formant approach for accessing Java codebases using the model management
languages of the Epsilon platform. In the proposed approach, instead of trans-
forming the codebase into an EMF-based representation, we provide an adapter
for the facilities of the Eclipse Java Development Tools (JDT). The adapter
exposes the internal representation of the code maintained by JDT as a set of
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“models” that, as far as Epsilon is concerned, are indistinguishable from any
other type of model. We also demonstrate how we use advanced JDT features
such as its search facilities to support performant OCL-inspired select queries.

The rest of the paper is structured as follows. Section 2 presents some key
events in the history of model-driven reverse engineering, and summarises the
current state of the art in terms of specifications and tools. Section 3 describes
the proposed approach. Section 4 compares the performance of MoDisco against
two configurations of our approach through a case study in which a codebase is
validated against a partial UML model. Finally, Section 5 presents our conclu-
sions and lines of future work.

2 Background: models from code

The practice of reverse engineering (RE) has been around for a long time, espe-
cially in the field of hardware design, where it is common to study finished prod-
ucts to extract high-level designs. Chikofsky and Cross [2] provided a taxonomy
of earlier software RE efforts, mentioning the ability to extract documentation
and design artifacts, to restructure the code, or to reengineer it (produce a new
version from a higher-level model extracted from the code).

In 1998, Kazman et al. presented CORUM II [3], an reengineering tool
integration model that consisted of an initial bottom-up “architecture recov-
ery” process (from code to higher-level representations) followed by a top-down
“architecture-based development” (from the transformed higher-level representa-
tions to the new code). This bottom-up and top-down combination is commonly
known nowadays as the “horseshoe” approach for reengineering, and is still being
used in modern tools, as mentioned below.

The term “model-driven reverse engineering” (MDRE) term was coined more
recently: one of its first uses was by Rugaber and Stirewalt in 2004, to present
their work on extracting and enhancing a model of a root solving program and
generating an equivalent program [4]. Rugaber and Stirewalt argued that the
formality of the specifications and the support for automated validation and
code generation simplified the production of the new version of the system and
reduced the risk of mistakes.

This need for formality and standardisation was also considered by the Ob-
ject Management Group (OMG), which in June 2003 issued a whitepaper inviting
contributions to the Architecture-Driven Modernization Task Force (ADMTF) [5].
The efforts of the ADMTF produced version 1.0 of the ADM Knowledge Dis-
covery Metamodel (KDM) in January 2008: the latest formal release of KDM
(version 1.3) is from August 2011 [6]. KDM is a comprehensive metamodel that
can express the various types of knowledge extracted from a legacy system,
covering not only the structure of the code but also UI, data modelling, event
handling and other concerns.

KDM was designed to cover the high-level concepts present in a legacy sys-
tem, rather than provide a 1:1 representation of the original sources. To cover
that gap, the ADMTF published the Abstract Syntax Tree Metamodel (ASTM)
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1.0 specification in January 2011 [7]. ASTM is a high-fidelity, low abstraction
level metamodel that is divided into a generic AST metamodel (GASTM) and
a set of language-specific AST metamodels (SASTMs).

There have been various implementations of the KDM and ASTM metamod-
els: MoDisco in particular is considered by the OMG as the reference implemen-
tation of the KDM and ASTM specifications [1]. MoDisco is an open source
project, part of the Eclipse Modeling top-level project. It is based on the Eclipse
Modeling Framework (EMF), and includes the various types of components re-
quired to enable MDRE (discoverers, transformations and generators). MoDisco
is largely divided into a base “infrastructure” layer (management of discoverers,
KDM/ASTM metamodels, etc.), a middle “technologies” layer (specific language
support, e.g. Java programs or Java Servlet Pages scripts), and a top-level “use
cases” layer (workflows of MoDisco invocations). MoDisco uses language-specific
metamodels for the discoverers, whose models can be then transformed to the
“pivot” metamodels (KDM and ASTM) for interoperability. In the same paper,
Bruneliere et al. show how MoDisco was used by Mia-Software for refactoring
and quality metric monitoring. The general approach of MoDisco is similar to
what was proposed in CORUM II, but its design allows for more flexibility in
terms of internal representations and support for other languages.

Other MDRE tools include:

– JaMoPP1 can extract EMF-compatible models conforming to a custom Java
metamodel from Java source code, using a Java parser generated through
EMFText [8].

– Moose2 is a Smalltalk-based tool that provides a platform for customised
source code analyses, based on models conforming to their FAMIX meta-
model [9]. FAMIX is a generic metamodel dedicated to representing the
underlying constructs of any object-oriented programming language.

– Rascal3 is a metaprogramming environment that allows for scripting model
transformations, and it includes a library that extracts a Rascal-compatible
model from the Eclipse JDT representations of a Java project [10].
Rascal’s JDT library is the closest to our approach, but it operates on an
extracted model instead of working directly with the JDT representations,
and it does not give access to the full AST. Another limitation is that Rascal
currently does not support EMF-based models, unlike Epsilon: these are
useful for case studies such as the one showed in Section 4.

3 Epsilon JDT driver: code as models

The previous section discussed various approaches for extracting models from
code, producing standalone representations that can be managed with EMF-
compliant tools. However, these extractors are usually one-off processes: if the
1 http://www.jamopp.org/index.php/JaMoPP
2 http://www.moosetechnology.org/
3 http://www.rascal-mpl.org/
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code changes, the extractor needs to be run again from scratch. Implementing
an extractor that takes advantage of the modularity of the target programming
language to achieve incrementality is not a simple task, and state-of-the-art
model extraction tools do not support this.

On the bright side, there is already a class of software that implements such
incremental extractors: integrated development environments (IDEs). Modern
IDEs provide advanced code search and refactoring tools, and in order to pro-
vide a responsive experience they need to build, maintain and use their internal
representations and indices quickly and efficiently. This paper proposes exposing
these representations as models, instead of writing one-off batch extractors.

This section describes a first implementation of such an approach, in which
the representations and indices of the Eclipse Java Development Tools are ex-
posed as models for the Eclipse Epsilon [11] family of model management lan-
guages. An overall description of the design is given, followed by a more specific
discussion about the integration with the search capabilities of JDT.

3.1 Overall design and implementation

Epsilon Object Language (EOL) = JavaScript + OCL

Epsilon Model Connectivity (EMC)
Core

Model Validation (EVL) Code Generation (EGL)

Model-to-model Transformation (ETL) ...
Task-specific
languages

Technology-specific
drivers

Eclipse Modeling Framework (EMF) Schema-less XML

Eclipse Java Developer Tools (JDT) CSV ...

extends

implements

Fig. 1. Architecture of the Epsilon family of model management languages

Figure 1 shows the general architecture of the Epsilon family of model man-
agement languages. The Epsilon Object Language (EOL) serves as the base
language for the rest of the Epsilon languages, which are specialized for cer-
tain tasks (e.g. EVL for validation). Reading and writing models is abstracted
over the Epsilon Model Connectivity (EMC) layer, which supports models im-
plemented in the Eclipse Modeling Framework (EMF), plain XML files, CSV
files and so forth. This work presents a first version of a new “technology-specific
driver” which exposes the representations maintained by the Eclipse Java De-
veloper Tools (JDT) as models: the EMC JDT model driver. The latest version
of the model driver is available as open-source software on GitHub4.

4 https://github.com/epsilonlabs/emc-jdt
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Fig. 2. Screenshot of the configuration dialog for an EMC JDT model

The entry point of an Epsilon model driver is its implementation of the
Epsilon IModel interface: for the EMC JDT driver, it is the JdtModel class. The
dialog used to configure an EMC JDT model is shown in Figure 2: the model
takes in the names of the Eclipse Java projects that should be exposed as a
model and whether Java bindings across files (i.e. resolutions of local names to
external types, functions and fields) should be precomputed. These bindings may
produce useful information needed for the model management task at hand, but
are generally expensive to compute.

Upon load, JdtModel fetches the actual projects and prepares a Reflec-
tiveASTVisitor that only traverses the Java source files in those projects. Reflec-
tiveASTVisitor is a specialisation of a JDT ASTVisitor, an implementation of
the Visitor design pattern [12]. When the user issues an EOL query of the form
X.allInstances, ReflectiveASTVisitor parses all Java source files in those
projects, traverses their JDT Document Object Model (DOM) abstract syntax
trees and returns all the instances found of the JDT DOM X class. This filtering
is done through Java reflection, by checking the names of the class and super-
classes of each object. This list of instances can be cached in memory (through
a respective configuration flag) to reduce times for future queries.
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The EMC JDT driver also provides some convenient shorthands to access
commonly required information, through an implementation of an EMC IProp-
ertyGetter. For a JDT FieldDeclaration f, its name can be accessed through
f.name: since the underlying JDT DOM class does not have a name prop-
erty, name clashes are avoided. BodyDeclarations are extended as well with sim-
ple public, static, abstract, protected, private and final Boolean
fields, instead of having to loop through Modifier instances.

3.2 Integrating Eclipse indexing with EOL

So far, we have discussed how the EMC JDT driver uses the Java parsing facilities
of JDT in order to iterate throughout a codebase and find all instances of a
particular language construct. However, in many scenarios, what is needed is a
quick way to retrieve specific instances instead (e.g. a Java type declaration with
a specific name). This is well supported by the code navigation and refactoring
capabilities of JDT, which keeps incrementally indices of all the Java projects in
the running Eclipse IDE. These are essentially memory- and disk-backed hash
tables from category/key pairs (e.g. “class definition” and class name) to the
path of the relevant .jar or .java file. Indices are reasonably lightweight: in a
workspace with the Epsilon source code (400k+ SLOC of Java code), the largest
.index file was 11MB.

As a proof of concept, the EMC JDT driver was extended to use the JDT
indices to quickly look up JDT TypeDeclarations by name. TypeDeclaration
.allInstances was specialized to postpone the traversal of the source files
and immediately return a custom SearchableTypeCollection (STC), which can
optimise specific queries on the collection through the Eclipse indices and oth-
erwise fall back to regular traversal. For an STC c, these queries are:

– c.select(it|it.name = expr): the STC takes the string result of
evaluating the included expr EOL expression and uses the JDT SearchEngine
class to issue a query to quickly locate the JDT ICompilationUnit containing
the desired type declaration. This compilation unit is parsed into a DOM
and the appropriate DOM node is retrieved. This is faster than iterating
through all the source code, but the file I/O and parsing still takes time.

– c.search(it|it.name = expr). It operates in much the same way as
select, but instead of parsing the file again to produce a DOM node, it
returns the JDT SourceTypes directly as indexed by Eclipse. This is notice-
ably faster, as no parsing is required, but it imposes more complexity on the
user as they have to deal with one more JDT class.

These two queries illustrate an interesting point in the design of JDT: the
SearchEngine does not return DOM nodes as one would reasonably expect. In-
stead, it returns internal representations that are only sometimes mapped back
to DOM nodes, for the sake of performance. Users need to decide whether sim-
plicity or performance is more important for their particular situation.

Another point is that SearchEngine has considerably more functionality, with
the ability to search other types of elements (e.g. method and field declarations)
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and provide various methods for filtering results. Integrating all these options
into the STCs would be an interesting line of future work.

4 Case study: validating code against UML models

In the previous sections, two approaches have been discussed: one used stan-
dalone extractors to produce models from code, and another reused the incre-
mentally built representations and indices of the Eclipse IDE as a model. This
section compares both approaches for a specific case study: checking if a Java
codebase implements all the classes and methods mentioned in a UML model.
This case study is meant to represent a typical model-driven task that combines
standalone models with a changing codebase.

The rest of this section will introduce the specific models and codebase used
and the implementations of the validation task. After that, their performance
results will be shown, and a discussion of their relative merits will follow.

4.1 Input models and codebases

For the experiment, it would have been ideal to have access to an large-scale
industrial open-source system that had a corresponding and reasonably up-
to-date and detailed UML diagram. However, these are hard to come by. As
an approximation, the experiment will use the UML models available through
opensource-uml.org, which were extracted from the Java code of several
popular open source libraries using the Modelio5 tool. In particular, the 41MB
UML XMI file produced from JFreeChart 1.0.17 was used.

Next, the source code for versions 1.0.17, 1.0.18 and 1.0.19 of JFreeChart
was downloaded from the official website6. Maven was used to generate Eclipse
projects from the source releases, which were used unmodified save for some
classpath settings to solve compilation issues. The Java discoverer in MoDisco
0.13.2 (running within Eclipse Mars.1, version 20150924-1200) was then used
to extract Java models in XMI format from these codebases (one XMI file per
version of JFreeChart). It must be noted that the Java discoverer also reuses
parts of Eclipse JDT and implements its own JDTVisitor The extractions and
all other experiments were run on a Lenovo Thinkpad T450 laptop with an i7-
5600U CPU, 16GiB of RAM and a 256GB SSD running Ubuntu 16.04, Linux
4.4.0-28 and Oracle Java 8u60.

The MoDisco UI was instrumented to collect extraction times7: specifically,
two lines of code were added to the widgetSelected method of the MoDis-
coMenuSelectionListener to measure the wall time taken by the extraction. The
extraction was run 10 times for each JFreeChart version: on average, extraction
of the 1.0.17, 1.0.18 and 1.0.19 codebases required very similar times: 19.38s,
20.76s and 19.97s, respectively. This is to be expected, since all three codebases
5 http://www.modelio.org/
6 http://www.jfree.org/jfreechart/
7 https://gist.github.com/bluezio/830245299f11af5660c440668fc78d95
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are of similar size: the resulting XMI files took up 169MB, 173MB, and 174MB
respectively. According to the JFreeChart forum8, 1.0.18 added JavaFX support
and some minor features, and 1.0.19 was a maintenance release.

4.2 Validation task

The validation task was implemented in the Epsilon Validation Language (EVL)
[13], which specialises EOL into a rule-based notation for checking invariants
across instances of certain types. Three implementations were written: one using
the model extracted by MoDisco, and two using the EMC JDT model driver
discussed in Section 3. One of the EMC JDT implementations uses select,
and the other uses search: their relative merits were discussed in Section 3.2.

The three EVL scripts are very similar, and use conceptually the same rules.
The EVL script for the search-based EMC JDT implementation is shown in
Listing 1. Since the UML model includes many irrelevant classes (e.g. a reverse-
engineered UML model of the JDK), the rules for UML classes are “lazy” and are
only triggered from the satisfiesAll call of the rule for the UML packages
whose fully qualified names start with the JFreeChart prefix.

The UML class rules check that: a) the Java codebase has exactly one match-
ing type for each class (based on its name and the name of its containing class,
if it exists), b) the matching type implements all the operations in the UML
class as methods, and c) the nested classes obey the same rules. No validation
errors are found for the 1.0.17 codebase (which is obvious, as the UML model
was extracted from it), and the same 4 validation errors are found for 1.0.18 and
1.0.19, since some methods were removed from 1.0.17 to 1.0.18.

4.3 Performance results and discussion

Having prepared the models and the validation scripts, the final step was running
the task itself. Each implementation was executed 10 times using the coarse
profiling capabilities of an interim release of the Epsilon framework (commit
3d4408d) and the environment described in Section 4.1. Epsilon measured and
reported the time required to load the model and perform the validation.

Figure 3 shows the times required for model extraction, model loading and the
validation itself. The times for the various releases of JFreeChart were roughly
equivalent. Focusing on the validation against the JFreeChart 1.0.17 source code,
MoDisco took 36.25 s on average in total, EMC JDT with select took 23.16 s
and EMC JDT with search took 12.30 s.

While these results are quite positive for EMC JDT, there are some consid-
erations that need to be made:

– MoDisco had the lowest validation times of all three options: 3.20 s on aver-
age, compared to 5.09 s on average for EMC JDT with search. This is due
to the fact that once the MoDisco model is loaded in memory, it is completely
standalone and does not require performing any type of disk I/O.

8 http://www.jfree.org/forum/viewforum.php?f=3
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1 context UML!Package {
2 guard : self.fqName().startsWith('jfreechart.org.jfree')
3 constraint AllClassesValid {
4 check {
5 self.fqName().println('checking package ');
6 return self.packagedElement.forAll(cl: UML!Class |
7 cl.satisfiesAll('HasOneMatchingType', 'MethodsExist', 'NestedAreValid'));
8 }
9 }

10 }
11
12 context UML!Class {
13 @lazy
14 constraint HasOneMatchingType {
15 check : self.matchingTypes().size = 1
16 }
17 @lazy
18 constraint MethodsExist {
19 check {
20 var td = self.matchingTypes().first;
21 return self.ownedOperations.forAll(op |
22 td.methods.exists(tdMethod | tdMethod.name = op.name ));
23 }
24 }
25 @lazy
26 constraint NestedAreValid {
27 check : self.nestedClassifier.forAll(n: UML!Class |
28 n.satisfiesAll('HasOneMatchingType', 'MethodsExist', 'NestedAreValid'))
29 }
30 }
31
32 @cached
33 operation UML!Class matchingTypes() : Sequence(JDT!TypeDeclaration) {
34 var candidates = JDT!TypeDeclaration.all.select(td|td.name=self.name);
35 if (self.eContainer.isKindOf(UML!Class)) {
36 var parentClassName = self.eContainer.name;
37 candidates = candidates.select(c|c.parent.isKindOf(JDT!TypeDeclaration)
38 and c.parent.name = parentClassName);
39 }
40 return candidates;
41 }
42
43 @cached
44 operation UML!NamedElement fqName() : String {
45 var container = self.eContainer;
46 if (container.isDefined() and container.isKindOf(UML!NamedElement)) {
47 return container.fqName() + '.' + self.name;
48 } else {
49 return self.name;
50 }
51 }

Listing 1. EVL source code of the search-based EMC JDT implementation of the
validation task. It checks that all UML classes and methods were implemented.

On the other hand, this relies on the fact that the extracted MoDisco model
fit completely into memory. If it had been much larger, it would be necessary
to use a database-backed store with support for lazy loading and unloading
(e.g. CDO). This would change the performance profile of the task, poten-
tially reducing model loading times (due to lazy loading) at the cost of
validation times (due to additional disk I/O).
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Fig. 3. Average processing times over 10 runs in seconds per implementation of the
validation task, step of the workflow and version of the JFreeChart library.

– MoDisco had the highest model loading times, since it had to load a 169MB+
XMI file in addition to the 41MB UML model. In comparison, the EMC JDT
models load almost instantly, as they retrieve model elements on demand:
the model loading time for the JDT scenarios is dominated by the time
required for the 41MB UML model.

– Outside this case study, the 20 seconds used for MoDisco model extrac-
tion could have been amortised over multiple queries. In the extreme case
in which model extraction times were excluded altogether, the MoDisco ap-
proach would have taken 16.87 s on average for 1.0.17, faster than EMC JDT
with select and only 4.57 s slower than EMC JDT with search.
This suggests that EMC JDT would be most useful when working with
frequently-changing codebases. Since every change would require extracting
the MoDisco model from scratch, amortising its cost would be harder, and
working “on demand” like EMC JDT would be more attractive.

Reiterating the third point, Figure 4 shows how much time would be required
on average in total to validate the codebases of 1.0.17, 1.0.18 and 1.0.19 against
the provided UML model. MoDisco would take 112.22 s, having to repeat the
extraction for each release. JDT with select would take 71.92 s, avoiding the
extraction but still having to reparse in order to map the search result to the
DOM node. JDT with search would only take 36.52 s, avoiding the pitfalls of
the two previous solutions.

5 Conclusion and future work

Current tools for querying a codebase as a model require an expensive model
extraction step that needs to process all the source code (even if not all of it
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Fig. 4. Comparison of the total time required on average (in seconds) to process all
JFreeChart versions, by implementation.

is needed), and must be repeated every time the code changes. In this work we
have presented a more lightweight approach that adapts “on-demand” Eclipse
JDT representations so they can be used from the languages in Epsilon as any
other model. We have showed how to integrate the JDT indices transparently
as well, making it possible to quickly find the relevant parts of the program for
the query and reduce the amount of parsing needed.

The approach has been demonstrated with a case study in which multiple
versions of a codebase were validated against a UML model: one of the configu-
rations of the approach was 3x faster than MoDisco (36.52 s instead of 112.22 s).
While the validation with MoDisco runs very quickly once the model is loaded
into memory, we have found that the model extraction and model loading pro-
cesses make it slower than our more lightweight approach. This suggests that
MoDisco is mostly suited towards stable codebases (e.g. legacy systems), in which
model extraction efforts can be amortised over many queries, and model loading
can be solved by using a store that supports on-demand loading and custom
indexing (e.g. Connected Data Objects). On the other hand, our solution is bet-
ter suited than MoDisco for frequently changing codebases, in which the model
extraction costs cannot be amortised and managing a database-backed represen-
tation only adds management overhead.

The present work has showed an initial prototype of the Epsilon JDT driver:
we intend to perform some optimisations to reduce times even further, e.g. by
caching parsed compilation units and integrating the other capabilities in the
JDT search indices. Supporting the additional filtering capabilities (e.g. search
by superclass) might require extending the OCL-like select operation in new
ways. Further use cases may also reveal the need for additional property getters
that encapsulate certain common queries over the JDT representations. Another
avenue of work is reimplementing this lightweight “adapter” approach on other
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languages supported by Eclipse, such as C or C++ (through the Eclipse CDT
project9).
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