
Extendable Toolchain for Automatic
Compatibility Checks

Vincent Bertram1, Alexander Roth1, Bernhard Rumpe1,2, and Michael von
Wenckstern1

1 Software Engineering, RWTH Aachen University, Aachen, Germany
2 Fraunhofer FIT, Aachen, Germany

Abstract. Embedded software systems are highly configurable and con-
sist of many software components in different variants and versions.
However, component updates or upgrades often result in unpredictable
incompatibilities with its environment. Existing research addresses this
challenge by employing formal methods with a fixed set of encoded static
compatibility checks, making it nearly impossible for engineers to add
new or modify existing ones. This paper presents a highly adaptable
infrastructure to define constraints for compatibility checks. The under-
lying approach transforms software components into instances of a C&C
meta-model, enriched with OCL compatibility constraints at runtime,
then evaluated by a solver. The result is transformed back into a C&C
model showing compatibility or incompatibility. The easy to integrate
infrastructure is based on industrial requirements and allows to add,
modify or delete constraints without restarting the tool infrastructure.

1 Introduction

Software systems for embedded devices are highly configurable consisting of a
variety of components in different variants and versions [10]. Because these com-
ponents are tightly integrated into their environment, which consists of multiple
other software components, updates/upgrades often result in unpredictable in-
compatibilities between its interacting components. In many cases updates/up-
grades are possible by adapting the component. However, to determine compati-
bility, as defined in [18], static compatibility checks with a fixed set of constraints
are proposed [16], which hampers adding new or modifying existing constraints.
This paper presents an adaptable infrastructure based on industrial requirements
to define and adapt compatibility constraints for checks between components us-
ing OCL at runtime. It is based on the meta-model as proposed in [3], which
allows, in contrast to other verification frameworks [8,16,19], besides intra- also
inter-model verification of constraints between Component & Connector (C&C)
models of even different modeling languages such as Simulink and Modelica. The
underlying approach transforms models of software components to instances of
the C&C meta-model, which is enriched with OCL compatibility constraints.
The instances and constraints are evaluated by a solver and the result is trans-
formed into a user friendly C&C model showing (in)compatibility based on a

2 Bertram, Roth, Rumpe, and von Wenckstern

MA

ECU_V1

pressure
sensor value

oxygen
sensor value

speed sensor
value ([0…250]) urea amount

«turn off urea amount

if speed sensor > 135»

MA

«turn off urea amount

if speed sensor > 125»

changed
constraint

ECU_V2

Fig. 1: Two versions of a simplified emission control ECU having different constraints

counter-example witness [15]. The easily integrable infrastructure allows to mod-
ify, delete, and add constraints without tool infrastructure restart and addition
of new transformations to check arbitrary (heterogeneous) C&C architectures.

Next is an example in Sec. 2 which is followed by a set of industrial require-
ments in Sec. 3. Sec. 4 introduces the tools and languages used. Sec. 5 proposes
the infrastructure. Sec. 6 describes the technical realization. Finally, Sec. 7 and
Sec. 8 compare our approach to existing work and conclude this paper.

2 Motivating Example

As a motivating example, we use a simplified emission control system. The Elec-
tronic Control Unit (ECU) has an input for the pressure value of the exhaust
system, a speed sensor for the current velocity, and an oxygen sensor. Using
these values, the urea amount is triggered to clean emissions. Now a team of
developers is responsible to develop a new version of the controller to maximize
gas mileage. In this context, a new version V2 has been developed. It has the
same ranges for all input ports but the constraint when to turn off the emission
control has been changed from 135 km/h to 125 km/h (see Fig. 1).

Due to varying regulations in different countries (in Germany the emission
control can be turned off if the speed is greater 120 km/h, whereas in the US
it can be turned off if speed is greater 128 km/h), a developer team member is
unsure if the new version can be used in the US and in Germany. Her doubts
are justified: on the component’s type level the different versions seem to be
compatible. However, due to the additional constraint they are not. In particular,
for the German market, the newer version is compatible (requires a turn off if
speed > 120 km/h), whereas in the US the new version is not compatible because
the emission control is turned off too early. Our proposed solution does not only
allow to check such compatibilities between different component versions, but
it also allows to dynamically en-/disable OCL constraints, e.g. local market
regulations such as emission control, during tool runtime.

3 Industrial Requirements

The proposed approach is developed with respect to a set of requirements, which
are derived from the SPES XT project1. They indicate that a differentiation be-

1
http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

Toolchain For Checking Structural Compatibility 3

tween engineers (who are using the toolchain) and developers (who are extending
the toolchain), is required. Subsequently, a set of the main requirements is in-
troduced:

(R1) Compatibility constraints have to be defined in comprehensive and con-
cise notation: Most engineers are only familiar with Java- or C-like syntax.
Therefore, specifying constraints must hide all model-checking aspects.

(R2) The tool should support heterogeneous C&C architecture models: Since
in industry various C&C architectures including third party plugins or in-house
developments are used, the tool should be easily extendable.

(R3) Developers should be able to modify structural compatibility constraints:
Compatibility rules must be adaptable instead of hardwire them to support
different local markets and to be flexible for changing laws.

(R4) Meaningful and model related error messages: Reported violations
must be easy to comprehend for engineers, having no deep knowledge of for-
mal methods. Therefore, expressive descriptions relating to source C&C models
should point to components being affected with incompatibility.

(R5) C&C model files should not be modified: The tool should also derive
compatibility statements (probably weaker ones, because of missing information)
between older (without touching them) and newer Simulink models.

(R6) Compatibility checking should be easy for engineers: A seamless inte-
gration into existing C&C modeling tools such as Simulink should be supported.

4 Modeling C&C Architectures and Constraints

The realization of the proposed approach is based on the MontiCore (MC) frame-
work [11], which is a light-weight and highly customizable language workbench
supporting language development and facilitates all elements of language defini-
tion, language processing, and code generation.

A language family, realized with the MC framework, is the UML/P language
family [17], which is rooted on the Unified Modeling Language (UML) family.
It provides a set of modeling languages, supporting reduced modeling language
concepts with clear semantics, addressing different aspects of software develop-
ment. For example, the UML/P Class Diagram (CD) modeling language can be
used to model structural aspects. Instances, of this structure can be described
using the UML/P Object Diagram (OD) language, and constraints for the struc-
tural model can be defined by the UML/P object constraint modeling language
(OCL/P). To model C&C architectures, Simulink [12], an industrial modeling
tool is used. The MC framework has been extended to process Simulink mod-
els and to generate queries for the Microsoft Z3 Satisfiability Modulo Theories
(SMT) solver [6], which finds solutions for first-order decisions problems.

5 Extendable Infrastructure for OCL Evaluation

An approach has been developed to check for structural compatibility of two
components, which satisfies the requirements described in Sec. 3 and is based

4 Bertram, Roth, Rumpe, and von Wenckstern

V1.slx

V2.slx

metamodel.cd

V1.od

V2.od

«instantiation»

«consistent»

metamodel.smt2

compatibility.smt2

V1.smt2

V2.smt2

errorClass1.oclerrorClassN.ocl errorClass1.smt2

«uses»

errorClassN.smt2

compatibility.ocl

counterExample1.od

counterExample.slx errorMessage1.txt

counterExample1.m

MontiCore Framework SMT SolverC&C Model

➀➀➀➀

➀➀➀➀

➁➁➁➁

➂➂➂➂

➂➂➂➂

④④④④

④④④④

➄➄➄➄

➄➄➄➄

➄➄➄➄

➄➄➄➄

➄➄➄➄

➅➅➅➅
➆➆➆➆

➇➇➇➇

➈➈➈➈

➉➉➉➉

counterExampleN.od answer.smt2

errorMessageN.txt

counterExampleN.m

Engineer

Developer

Role:

q
u
e
ry

.s
m

t2

plug-in points

Fig. 2: Compatibility checking workflow on the example of two Simulink models

on C&C architectures and user-friendly (R1) constraint modeling language. The
proposed approach, shown in Fig. 2, is composed of five plug-in points, which
enable dynamic support for different modeling languages such as Simulink , Tar-
getLink and Modelica [13] and solvers such as Alloy [2], Yices [6], and Z3 [14]
(R2). Since all transformations are dynamically executed during the checking
process, redefinitions and extensions of compatibility definitions and compati-
bility variations (e.g. for local markets) are supported (R3).

The numbers (1) to (10) in Fig. 2 represent the processing steps: (1) trans-
forms C&C input models to ODs, which are an instantiation of the meta-model
for all well-established and commonly used C&C modeling languages. More in-
formation about this meta-model can be found in one of our previous work [3].
(2), (3) and (4) generate for all UML/P language family artifacts (CDs, OCL
constraints, and ODs) solver specific ones. The parts are merged to one query
document in (5), and evaluated by the solver in (6), which produces an artifact
containing - in case of incompatibility - instantiations of error classes. Each error
class is transferred back to one or several counterexample ODs in (7). These error
class ODs are used to generate user-friendly text messages in (8) and to produce
in (9) Matlab code generating visual counterexamples with minimal witnesses
when executed in (10). Underspecification, which may occur in transformation
steps (3) and (4), when checking compatibility constraints between older (not
enriched model with less information) and newer (more information) C&C com-
ponents (R5), is handled by dynamically not executing particular constraints.

The toolchain is divided into a C&C Engineer Frontend, a MC Developer
Frontend, and a Solver Backend, each of which addressed by either an automo-
tive engineer modeling Advanced Driver Assisted Systems (ADAS) functionality
(gray-slashed artifacts) or a quality control/assurance (QA/QC) developer spec-
ifying compatibility constraints and different error classes (gray-lined artifacts).

Engineer View The automotive engineer initiates the compatibility check in
Simulink (R6), therefore the engineer must not learn a new tool. The result
annotated with error descriptions is presented as a Simulink model (R4), since

Toolchain For Checking Structural Compatibility 5

Fig. 3: Structual compatibility errors are illustrated as Simulink model witnesses

1def boolean infix (Number v) in (Range r) is:

2 result = v >= r.min && v <= r.max &&

3 (~r.res || (v - range.min) % range.res == 0)

OCL/P

1(define-fun In_Number_Range((v Number) (r Range)) Bool

2 (and (GreaterThan_Number_Number v (minimum r))

3 (LessThan_Number_Number v (maximum r))

4 (or (not (resDefined r))

5 (Equals_Number_Number

6 (Mod_Number_Number (Minus_Number_Number v (minimum r))

7 (resolution r))

8 (mk-number 0)))))

Z3

(Range r has no optional association res to Resolution)

Fig. 4: Comparison between OCL code and Z3 code generated by 3© in Fig. 2

the engineer already knows Simulink with its syntax and semantics, thus, he
is able to understand the error messages. The witness generation algorithm is
based on previous work done by Ringert [15] and is showing the constraint
violating part of the model (see Fig. 3). The example points directly to the
violated constraint US::EmissionControl when checking backwards compati-
bility of ECU V2 to ECU V1. As the algorithm does not find a witness violating
EU::EmissionControl, backwards compatibility is still given for the German
market.

Developer View The developer defines compatibility constraints and coun-
terexamples as well as additional regional constraints as presented in Sec. 2 in
OCL/P using the MC developer frontend. These counterexample specifications
are used to generate useful feedback for automotive engineers in case of com-
ponent incompatibility as shown in Fig. 3. Fig. 4 illustrates how MC transforms
OCL/P code to SMT code for use with the Z3 solver. A more detailed textual
description of the code and how a counterexample in OCL/P looks like can be
found in [4]. Our student survey found out that OCL/P code is easier to learn
than SMT code, because the syntax is Java like, especially with the infix oper-
ator notation, whereas most students are not very familiar with SMT’s prefix
notation making it more difficult to match what arguments belongs to what
prefix-operator. A more complex example, comparing two ADAS, and showing
how unoptimized generated SMT code actually looks like is available at:

http://rise4fun.com/Z3/2AsLg

http://rise4fun.com/Z3/2AsLg

6 Bertram, Roth, Rumpe, and von Wenckstern

6 Performance Considerations

The overall performance of this approach mainly depends on the generator. In
particular, how it generates solver-specific code from the UML/P language family
artifacts. Since our motivating example is too small, a bigger model comparing
interface compatibility of two ADAS is taken from the SPES XT project. Tab.12

shows the impact of the generator where model A is compatible to model B, and
model A has 126 components as well as model B has 97 components. Note that
all artifacts are translated into SMT code using different generator strategies,
and then evaluated by Microsoft’s Z3 solver.

This table underlines that the verification execution time mainly depends
on the optimizations implemented by the generator. The difference between the
2nd and 3rd column is that in the 2nd one no simplify constraints had been
generated and the 3rd one added the simplify solve-eqs smt command to the
generated SMT code. Due to the highly customizable toolchain infrastructure
providing several plug-in points, it is possible to integrate different optimization
steps. Tab. 1 also shows that it was a good idea to introduce CDs and OCL
constraints as intermediate layer, because this layer is independent of all solver
specific optimizations; translating Simulink models directly to SMT code and
formulating the compatibility constraints directly in Z3 code would probably
result in changing them all the time and polluting the model with solver strategy
annotations just for performance reasons - which would make them very hard to
read and nearly impossible to reuse at the end.

model time [s] time* [s] change in generated Z3 code

m1 timeout 10.08 -

m2 126.68 10.44 remove custom datatypes

m3 93.55 12.86 change encoding of meta-model

m4 138.38 10.47 use ite (if-then-else) instead of implies after quantifier

m5 70.74 8.34 replace enumeration datatypes by integers

m6 19.05 4.33 replace id hash with an unique id starting at zero

m7 15.17 4.23 remove unnecessary ites when translating OCL to Z3

Table 1: Impact of generated SMT code on Z3’s execution time.
* added simplify solve-eqs smt as solver strategy to the generated artifact.

In the first version (m1) the meta-model, the ODs and the OCL constraints
were nearly one by one translated to SMT code. The result was quite readable
SMT code, as this code shows for the Connector element, which connects a
source port, (List Name) represents its full qualified name, with a target port
(see Fig. 5). Note that accessing some parts of a C&C model element could also
be done very intuitively, e.g. (source con) where con is a Connector variable.

In the last generated model version (m7) all meta-model element structures
were flattened to integers. This means there is no such Connector element in
Z3 code; instead of every element is represented by an unique id and accessing
a C&C element part is now done by accessing a function (see Fig. 5). Addi-
tionally, all names, e.g. port names, have been replaced by an unique integer.

2 measured by Nicolai Strodthoff in his bachelor thesis

Toolchain For Checking Structural Compatibility 7

1; meta-model definition

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (target (List Name)) (id ID)))))

4; instance creation

5(mk-connector (insert n_switch1 (insert n_out1 nil))

6 (insert n_mul (insert n_in2 nil)) id_1593458942)

Z3 �

1(define-fun getConnectorSourceFromId ((id Int)) (List Int)

2(declare-datatypes () ((Connector (mk-connector (source (List Name))

3 (ite (= id 2) (insert 2 (insert 56 nil))

4 (ite (= id 14) (insert 0 (insert 56 nil))

Z3 �

(code is an excerpt)

Fig. 5: Z3 code used in first version (top) and last version (bottom)

The entire post-processing step such as flattening data structures and replacing
names by integer number is done by using the plug-in point (5) in Fig. 2 after
all documents have been merged to one query document. The last optimization
from m6 to m7 used the plug-in point (6) by removing ites in Boolean OCL
constraints. The code (ite cond1 true (ite cond2 false (ite cond3 true

...)) true) will be replaced by (or cond1 cond3 ...).
This study shows that the modular and extendable architecture supports

flexibility, i.e., replace the Z3 solver with another one like Alloy, and adaptations
of generator algorithms to optimize performance.

7 Related Work

Besides our toolchain, there exist several frameworks for compatibility analy-
sis. We want to mention here six representatives: (1) Dajsuren’s architectural
framework [7], which checks consistencies between multiple software views by
lifting their detailed information up to more abstract functional views. (2) Ac-
tiveTreaty [20] validates component compatibility (interface as well as behavioral
one) using contracts which can be described in Java or OCL using the Dresden
OCL [9] Eclipse plugin. (3) USE [5] allows to specify and check OCL constraints
on UML models. (4) MATE [19,1] defines constraints directly in Simulink ; this
results in modifying all existing Simulink models when adding new constraints
(violating (R5)). (5) Massif [8] on the other hand, provides a specific MATLAB
Ecore meta-model and a tool instantiating these meta-models (satisfying (R5));
but the Simulink specific meta-model hampers support for heterogeneous mod-
els (see (R2)). (6) SimCheck [16] can check (only) intra-model compatibilities
and can generate counterexamples by annotating Simulink models; however,
SimCheck hard-wires their data type, unit and dimension checks directly into
Simulink models by annotating them with 7-tuple structures basing directly on
their solver language; which makes it very hard to maintain these constraints for
developers (see (R3)).

8 Conclusion

Update of software components are very unpredictable due to different versions,
variants, and configuration options. Based on a set of industrial requirements and

8 Bertram, Roth, Rumpe, and von Wenckstern

on running example, a highly adaptable infrastructure to check compatibility
constraints is presented. It is based on a generic meta-model and employs OCL
at runtime, which allows high customizability and heterogeneous support for
C&C architectures. The underlying approach supports different requirements of
engineers and QA/QC developers to satisfy future infrastructure extensions and
provide a user friendly witness-based error interface.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Moflon:a standard-compliant
metamodeling framework with graph transformations. In: ECMDA-FA (2006)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software & Systems Modeling (2008)

3. Bertram, V., Manhart, P., Plotnikov, D., Rumpe, B., Schulze, C., von Wenckstern,
M.: Infrastructure to Use OCL for Runtime Structural Compatibility Checks of
Simulink Models. In: Modellierung (2016)

4. Bertram, V., Roth, A., Rumpe, B., von Wenckstern, M.: Encapsulation, Operator
Overloading, and Error Class Mechanisms in OCL. In: OCL16 (2016)

5. Brüning, J., Gogolla, M., Hamann, L., Kuhlmann, M.: Evaluating and Debugging
OCL Expressions in UML Models. In: TAP (2012)

6. Cok, D.R., Stump, A., Weber, T.: The 2013 Evaluation of SMT-COMP and SMT-
LIB. Journal of Automated Reasoning (2015)

7. Dajsuren, Y., Gerpheide, C.M., Serebrenik, A., Wijs, A., Vasilescu, B., van den
Brand, M.G.: Formalizing correspondence rules for automotive architecture views.
In: QoSA (2014)

8. Hegedüs, A., Starr, R.R., Búr, M., Nascimento, L., Dóczi, R., Mirachi, S., Ráth,
István und Horváth, A.: Massif: Matlab simulink integration framework for eclipse
(2015), http://github.com/FTSRG/massif

9. Hussmann, H., Demuth, B., Finger, F.: Modular architecture for a toolset support-
ing OCL. Science of Computer Programming (2002)

10. Kasoju, A., Petersen, K., Mäntylä, M.V.: Analyzing an automotive testing process
with evidence-based software engineering. IST (2013)

11. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a Framework for Compositional
Development of Domain Specific Languages. STTT (2010)

12. Mathworks: Simulink User’s Guide. Tech. rep. (2015)
13. Modelica Association: Modelica - A Unified Object-Oriented Language for Systems

Modeling. Tech. rep. (2012)
14. Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS (2008)
15. Ringert, J.O.: Analysis and Synthesis of Interactive Component and Connector

Systems. Shaker Verlag (2014)
16. Roy, P., Shankar, N.: Simcheck: A contract type system for simulink. Innov. Syst.

Softw. Eng. (2011)
17. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer (2016)
18. Rumpe, B., Schulze, C., von Wenckstern, M., Ringert, J.O., Manhart, P.: Behav-

ioral Compatibility of Simulink Models for Product Line Maintenance and Evolu-
tion. In: SPLC (2015)

19. Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: The mate approach: Enhanced
simulink and stateflow model transformation. In: MathWorks Automotive Confer-
ence (2007)

20. Wilke, B.C., Dietrich, J., Demuth, B.: Event-Driven Verification in Dynamic Com-
ponent Models. In: WCOP (2010)

	Extendable Toolchain for Automatic Compatibility Checks
	Introduction
	Motivating Example
	Industrial Requirements
	Modeling C&C Architectures and Constraints
	Extendable Infrastructure for OCL Evaluation
	Performance Considerations
	Related Work
	Conclusion

