
Mapping USE Specifications into Spec#

Jagadeeswaran Thangaraj1 and Senthil Kumaran U2

1 DFAT, Dublin, Ireland
jagadeest@gmail.com

2 School of Information Technology and Engineering,
VIT University, Vellore, TN, India

usenthilkumaran@vit.ac.in

Abstract. The UML model is easy to describe the object oriented pro-
gram components clearly in graphical notation. OCL allows users to
express textual constraints about the UML model. The USE tool allows
specification to be expressed in a textual format for all features of the
UML model with OCL constraints. Spec# is a formal language, which
extends C# with constructs for non-null types, preconditions, post con-
ditions, and object invariants. It allows programmers to document their
design decisions in the code. Spec# has run time verifier to verify the
specification constraints over the C# code. This paper describes the
mapping of USE specifications into Spec# which helps to improve the
quality of both UML/OCL and Spec#.

Keywords: USE, UML, OCL, Spec#.

1 Background & Motivation

The Unified Modelling Language(UML) model is easy to describe the object ori-
ented program components clearly at the system design stage. The UML’s class
diagram depicts the details of a class of the model in an object oriented system.
The relationship restrictions with other classes can be described by associations
which are called UML constraints. Association multiplicities define the connec-
tion relation of classes to each other. Object Constraint Language(OCL) allows
users to express textual constraints about the UML model [8]. So the UML class
diagram with OCL constraints can describe all the elements of object program
constructs with their specification.

The UML-based Specification Environment (USE) tool describes the pro-
gram’s specification at the specification level. The USE tool is based on a subset
of UML and OCL. The USE tool allows specification to be expressed in a textual
format for all features of a model, e.g., classes, attributes in the UML class dia-
grams. Additional constraints are written using OCL expressions [6]. The USE
specification can easily convert to corresponding graphical representations using
textual editor: Class diagram, Object diagram. Also it performs the verification
of OCL constraint structures easily.

Spec# has run time verifier to verify the specification constraints over the C#
code. Spec#’s specifications are not just comments, but those are executable [10].

In recent years, model based transformation is getting more popular [2] i.e.code
generation from system design. At the moment, there is no explicit tool to gen-
erate Spec# code from UML/OCL.

In this paper, we map the UML/OCL properties of USE specification in
order to generate Spec# code. Motivation behind this mapping is to find out
what properties can add at the design phase in order to improve the quality
of UML/OCL. In the same manner, this paper helps improving Spec# to sup-
port full UML/OCL properties. Remainder of the paper is organised as follows.
Next section maps the properties between USE specification and Spec#. Class
specification mapping is illustrated in section 2.1 and constraints in section 2.2.
Unmapped properties are explained in section 2.3. Finally section 3 explains the
conclusion of the mapping and recommended future works.

2 Mapping UML/OCL properties between USE and
Spec#

For code generation, we need the corresponding references to the elements of
both the source and the target languages [3]. This section presents the structural
correspondence of USE(UML/OCL) and Spec#.

2.1 Mapping Class diagrams to Spec# Classes

This section explains the mapping of class properties between the USE specifi-
cation and Spec#.

Primitive types: Integer, Real, Boolean and String [8] are primitive types in
USE. The USE primitive types are directly mapped on predefined Spec# types.
Thus the primitive USE types Boolean, Integer, Real and String are, respectively,
mapped into Boolean, Integer, Float and String of Spec#.

Collection types: Collection types are used to group the elements together
in some formal manner: Set, Bag, OrderedSet and Sequence [8]. The Spec#
generic class, ‘System.Collections.Generic.List’ stores the elements in the format
of Sequence. The OCL constraints are constructed on a UML diagram using these
collection types, but, Spec# only supports the collection type List. The collection
operations for all USE types are mapped into the corresponding operations of
Spec#’s list.

Class & Enumeration: In an USE specification, class diagrams define the
static characteristics of the system by specifying all classes, attributes and meth-
ods of each class and interrelations between the objects of these classes. In Spec#,
whole program implementations mirror the role of the class diagram. The class
construct is used to define all aspects of the class model with attributes, method

USE Spec#

enum Color{silver, gold}

class Customer

attributes

name : String;

title : String;

isMale : Boolean;

age : Integer;

operations

age():Integer;

birthdayHappens();

end

class CustomerCard

end

association holds between

Customer[1] role owner

CustomerCard [0..*] role cards

end

public enum Color{silver, gold};

public class Customer

{

[Rep][ElementsRep] List<CustomerCard>

cards = new List<CustomerCard>();

protected String name;

protected String title;

protected bool isMale;

protected int age;

public int age()

{

}

public void birthdayHappens()

{

}

}

public class CustomerCard

{

[Rep]protected Customer owner;

...

}
Table 1. Class & Enumeration Representation

UML Spec#

class Transaction

attributes

points : Integer;

operations

earnPoints(points);

end

class Burning < Transaction

end

class Earning < Transaction

earnPoints(points);

end

public class Transaction

{

[Additive] public int points;

[Additive] public void earnPoints(int points)

{ additive expose (this){ }

}

}

public class Burning:Transaction

{

}

public class Earning:Transaction

{

[Additive] public void earnPoints(int points)

{ additive expose (this) { }

}

}

Table 2. Inheritance Representation

definitions, inheritance and association relations. In USE, operations of a class
are represented after attribute declaration using the keyword operations as an
example shown in Table 1. In Spec#, operations are written as standard method
definitions.

Enumeration is used to hold the predefined constants to declared variables.
The UML supports enumeration types using keyword enum [8]. The Spec# also
supports the enum keyword as shown in Table 1.

Associations and Aggregations: An association describes the static rela-
tionship between the classes. In USE, associations are represented using the
keyword association followed by the association name representing the link be-
tween the classes with role names. In Spec#, the associations are represented by
constructing the objects of the association in the class definition. An association
with multiplicity ‘1’ is represented as a single object, and the association with
multiplicity ‘*’ is represented as a list of object declarations. References to other
objects are represented with the ownership type annotations ([Rep] & [Peer]).

Any object can refer to other objects. Aliasing occurs when one object is
reachable through multiple paths, i.e. more than one reference is referred by the
same object. Ownership helps to control aliasing and assists in structuring object
relationships in a program. By using this ownership representation, an owner ob-
ject can access the reference objects. Ownership types help the programmer track
information about object aliasing. Ownership types representation mainly spec-
ified in two types: Rep & Peer. Same ownership objects are represented ‘peers’
or ‘siblings’ [1]. Some objects are represented as reference of an owner object,
are called ‘reference’ objects, i.e. an object can referred by owner. Sometimes
multiple references can exist to an object. A [Rep] attribute which stands for
representation [5]. [ElementsRep] specifies the ‘*’ multiplicity as list of objects.
An example is shown in Table 1.

Inheritance: Inheritance is an important concept in object-oriented design,
which allows identical functionality of a class to be inherited into another class.
New functionality can then be added to the class which inherits [7]. For example,
Burning and Earning are subclasses of the Transaction class. Subclass is that
may inherit the properties of superclass. In USE, inheritance is represented by
the ‘<’ operator.

In Spec#, inheritance is represented by the ‘:’ operator. Subclasses attributes
which need to access superclass attributes must be declared with [Additive]
keyword [5]. If an object of a subclass needs to access attributes of its superclass,
then those attributes must be annotated with the keyword [Additive]. In the
example shown in Table 2, an attribute points is overridden in the earnPoints()
method of the subclass Earning. Therefore, it needs to access the superclass
Transaction’s attribute points. Therefore it is annotated as [Additive].

USE supports multiple inheritance by comma as an example follows:
Earning < Transaction, Burning

Here, Earning class inherits from classes Transaction and Burning. As C#,
Spec# does not support multiple inheritance.

2.2 Mapping OCL constraints to Spec#

Constraints are conditions or restrictions over a model or state. In USE, con-
straints are specified by Boolean expressions which must be side effect free. That
means, the constraint must be evaluated to true or false and it must not change
the state over the system. In a correct system, constraints must be evaluated to
true. In USE, constraints are defined over various elements of the class diagram.
Invariants, preconditions and postconditions are major constraints [8] which are
specified by the operators inv, pre and post. These are checked via a validation
process. These constraints are represented in Spec# as assertions. This section
explains the mapping of these properties between the USE specification and
Spec#.

Preconditions: A precondition is a condition that must be true before calling
a method in a context in order to get the expected behaviour from the method.
In Design by Contract (DBC), the method’s client must meet the precondition.
In a university, a student must be older than 23 years to enroll into a course as
a mature applicant. This is described as a constraint as follows in Table 3.

OCL Spec#

context MatureProgram

::enroll(stu : Student)

pre: stu.age >23

public class MatureProgram

{

public void enroll(Student stu)

requires stu.age >23;

{

}

}
Table 3. Precondition Representation

The precondition declares that for any Student stu, who will be enrolled
into a course as a mature student, his age must be greater than 23. The keyword
requires is used to represent preconditions in Spec#.

Postconditions: A postcondition is a condition that should be true after exe-
cuting a method in a context if the method behaves as expected when executed
with a true precondition. In DBC, a designer establishes the postcondition. For
example, as shown in Table 4, the method postcondition declares that the result
of the method enroll() must add the student stu to the MatureProgram if

he/she has already not enrolled into the program. The keyword ensures is used
to represent the postcondition in Spec#.

OCL Spec#

context MatureProgram

::enroll(stu : Student)

post: numStudents =

numStudents@pre + 1

context MatureProgram

::allocate()

post: self.numPlaceAvail

= self.numPlaceAvail@pre - 1

public class MatureProgram

{

public void enroll(Student stu)

ensures numStudents.Count

== old(numStudents.Count) +1

{

}

public void allocate()

ensures this.numPlaceAvail

== old(this.numPlaceAvail)-1;

}
Table 4. Postcondition Representation

The special property ‘@pre’: In USE, @pre is used to hold previous value
of an element before methods execution. The keyword old performs the same
function in Spec#. An example follows in Table 4. In this, if a student enrolled
into a course, the number of available places must be reduced by one.

Keyword ‘self ’: In USE, the keyword self is used to refer the current
instance of certain object of a class. The keyword this is used for the same
function in Spec#.

Class Invariants: A class invariant is a condition that should be true during
the entire life cycle of the class instances. That means, the class invariants must
be hold for entire life of objects created. For example, a class invariant could be
that a student must be more than 18 years old to enter into 3rd level education
as shown in Table 5. The keyword invariant is used to represent the invari-
ants in Spec# as shown in Table 5. During inheritance in Spec#, an overriding
method may add additional postconditions with the superclass’s preconditions
and postconditions but cannot add new preconditions in order to keep the prop-
erty of strengthening postconditions and weakening preconditions. A subclass
may also strengthen the invariant.

2.3 Unmapped properties

Table 6 shows the correspondence of UML/OCL proerties between USE and
Spec#. Based on this comparison, Spec# needs to define the generic collection

OCL Spec#

context Student

inv : age > 18

Class Student

{

.....

invariant age>18;

......

}
Table 5. Class Invariant Representation

types (Set, Bag, Sequence) and Meta types (OclAny, OclExpression, OclType).
Also it needs to define ‘Collection’ Operations. On the other hand, Spec# pro-
vides ownership type constraints (Rep, Peer) in association relations and Inheri-
tance properties from one class to another to specify conditions using [Additive].
It has special feature, Non null types, that eradicates all non null dereference
errors. In Spec#, type T! contains only references to objects of type T, which
cannot be null.

UML/OCL properties USE Spec#

Precondition pre requires
Postcondition post ensures
Invariant inv invariant
Attributes attributes 3

Collection Set, Bag, Sequence List
Old @pre old
Quantifiers 3 forAll, exists
Multiple Inheritance 3 7

OCL Types 3 7

Metatypes 3 7

Initial 7 constructor
Derived 7 3

Non Null 7 3

Termination 7 7

Table 6. Correspondence of UML/OCL proerties between USE and Spec#
3: Support & 7: No Support

3 Conclusion

This paper has presented the mapping of USE specifications with Spec# for gen-
erating the Spec# code skeletons. It gives an idea to introduce some properties in
software design and implementation towards to support the verification. Based

on our study, USE does not allow the addition of ownership type constraints
(Rep, Peer) in software design phase. We have introduced these ownership type
information to UML/OCL [4]. In this paper, we developed an approach to in-
troduce ownership type constraints to USE specifications.

3.1 Future work

To support OCL directly, Spec# needs the collection operations. So our next
aim is to generate a library to support the generic collection data types (Set,
Bag and Sequence) and the different operations on the collection types (size,
isEmpty, notEmpty, sum, count, includes and includesAll). Also our work will
support Meta types like OclAny, OclExpression, OclType and OCL statements
(OCLKindof, OCLTypeof).

References

1. Dave Clarke, Johan Östlund, Ilya Sergey and Tobias Wrigstad: Ownership Types:
A Survey. In Aliasing in Object Oriented Programming, Springer Berlin Heidelberg,
Berlin, Heidelberg: Springer, 15-58, ISBN: 978-3-642-36946-9, DOI:10.1007/978-3-
642-36946-9-3, http://dx.doi.org/10.1007/978-3-642-36946-9-3 (2013)

2. Frank Hilken, Philipp Niemann, Martin Gogolla and Robert Wille: From UML/OCL
to Base Models: Transformation Concepts for Generic Validation and Verification.
In Theory and Practice of Model Transformations - 8th International Conference,
ICMT 2015, held as Part of STAF 2015, L’Aquila, Italy, July 20-21, (2015)

3. Hiroaki Shimba, Kentrao Hanada, Kozo Okano and Shinji Kusumoto: Bidirectional
Translation between OCL and JML for Round-Trip Engineering, Software Engi-
neering Conference (APSEC, 2013) 20th Asia-Pacific: IEEE 49 - 54 (2013)

4. Jagadeeswaran Thangaraj, SenthilKumaran U: Introducing Ownership Type con-
straints to UML/OCL. In International Workshop on Aliasing, Capabilities and
Ownership, IWACO17 co located with the 31st European Conference on Object-
Oriented Programming, ECOOP 2017. (Barcelona, Spain, Jun 2017)

5. K. Rustan M. Leino, Peter Müller : Using the Spec# language, methodology, and
tools to write bug-free programs, LASER Summer School 2007/2008: Springer-
Verlag, (2008)

6. Martin Gogolla, Fabian Buttner, Mark Richters: USE: A UML-based specification
environment for validating UML and OCL, In Science of Computer Programming
(2007): Elseveir, 27 – 34 (2007)

7. Mike Barnett, Rustan Leino, Wolfram Schulte: The Spec# programming sys-
tem: An overview. In Construction and Analysis of Safe, Secure, and Interop-
erable Smart Devices: International Workshop, CASSIS 2004, Marseille, France,
March 10-14, 2004, Revised Selected Papers. Springer Berlin Heidelberg, Berlin,
Heidelberg, 49–69, ISBN:978-3-540-30569-9, DOI:10.1007/978-3-540-30569-9-3,h
ttp://dx.doi.org/10.1007/978-3-540-30569-9-3 (2005)

8. OMG: Object Constraint Language(OCL):Version 2.3.1.Object Management
Group,http://www.omg.org/spec/OCL/2.3.1 (2012)

9. OMG: Unified Modeling Language(UML):Version 2.4.1, Object Management
Group, http://www.omg.org/spec/UML/2.4.1, (2011)

10. Rosemary Monahan, K. Rustan M. Leino: Program Verification using the Spec#
Programming System, ECOOP Tutorial (2009)

