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Abstract. The Collection iterations and operations are perhaps the
most important part of OCL. It is therefore important for an OCL eval-
uation tool to provide efficient support for Collections. Unfortunately,
some clauses of the OCL specification appear to inhibit efficient or de-
terministic support. We review the inhibitions and demonstrate a new
deterministic and lazy implementation that avoids them.

Keywords: OCL, collection, deterministic, lazy, mutable

1 Introduction

The OCL specification [11] defines an executable specification language suitable
for use with models. OCL’s power comes from its ability to evaluate characteris-
tics of multiple model elements using iterations and operations over collections.

The side-effect free functional characteristics of OCL should provide excellent
opportunities for optimized evaluation, but sadly the optimization in typical
OCL tools is poor. Collection evaluation is an area that should be particularly
good, however it is very easy for the efficiency and/or memory usage to be
outstandingly bad.

Deterministic execution is a desirable property of any language; very desirable
if you are attempting to debug an obscure failure. Unfortunately today’s OCL
tools are not deterministic and so OCL-based Model-to-Model transformations
tools also lack determinism.

In Section 2, we review the problems that the OCL specification appears
to pose. In Section 3 we revisit these problems to identify over-enthusiastic or
inappropriate reading of the OCL specification. Then in Section 4 we introduce
our new Collection implementation that solves the problems. The new solution
is still work in progress and so in Section 5 we describe what remains to do
to integrate it effectively. In Section 6 we look at related work and conclude in
Section 7.

2 The Problems

We briefly review some implementation challenges that the OCL specification
provides.



Collection types: Four concrete derivations of the abstract Collection type are
specified to support the four permutations of ordered/not-ordered, unique/not-
unique content. These derived collections types are

– Bag - not-ordered, not-unique
– OrderedSet - ordered, unique
– Sequence - ordered, not-unique
– Set - not-ordered, unique

Java implementations may use a custom class, LinkedHashSet, ArrayList
and HashSet respectively to implement these four Collection kinds.

Problem: Four distinct collection types.

Immutability: OCL is a functional language free from side effects. It is there-
fore impossible to modify an OCL Collection. There are no operations such as
Set::add(element) that modify the receiver. Rather there are operations such
as Set::including(element) that return a new Set based on the receiver and
including the additional element. The obvious implementation of a cascade of
operations such as a->including(b)->including(c)->including(d) creates
a new intermediate collection between each operation.

Problem: Immutability implies inefficient collection churning.

Eagerness: OCL operations are defined as a computation of an output from
some inputs. A cascade of operations such as a->including(b)->excludes(c)
is therefore evaluated in three steps as get-a, then create a+b, and finally test
a+b for c content. There is no mechanism for early discovery of a c to bypass
redundant computations.

Problem: Specification implies eager evaluation.

Invalidity: A malfunctioning OCL evaluation does not throw an exception,
rather it returns the invalid value, which will normally be propagated through
invoking computations back to the caller. However OCL has a strict Boolean
algebra that allows the invalid value to be ‘caught’ when, for instance, ANDed
with the false value. The presence of the invalid value in a collection is prohib-
ited, or rather the whole collection that ‘contains’ the invalid value is replaced
by the invalid value. The result of a collection evaluation cannot therefore be
determined until every element is present and checked for validity.

Problem: Invalidity implies full evaluation.

Determinism: Each collection type has distinct useful capabilities and so conver-
sions between collection types are specified to facilitate their use. However, when
the asOrderedSet() and asSequence() operations are applied to not-ordered
collections, the operations must create an ordering without any clue as to what a
sensible ordering criterion might be. This is obviously impossible and so typical
Java implementations use the indeterminate order provided by a Java iteration
over an underlying Java Set.

Problem: asOrderedSet() and asSequence() imply indeterminacy.



OCL equality: OCL is a specification language and when dealing with numbers,
OCL uses unbounded numbers. Consequently the following OCL expressions are
true:

1 = 1.0 Set{1,1.0}->size() = 1 Set{Set{1},Set{1.0}}->size() = 1

When using Java to implement OCL, the numeric equality is satisfied by the
primitive types int and double but not by the object types Integer and Double.
Since Java sets use object equality to establish uniqueness, a naive implementa-
tion may malfunction if it assumes that OCL and Java equality are the same.

Problem: OCL and Java equality semantics are different.

3 The Problems Revisited

The foregoing problems lead to poor and even inaccurate OCL implementations.
We will therefore examine them in more detail to distinguish myth and truth
before we introduce our new solution.

3.1 Immutability

While OCL may provide no operations to modify Collections, it does not prohibit
modification by underlying tooling. A modification that does not affect OCL
execution is permissible.

An evaluation of a->including(b)->including(c) may therefore re-use the
intermediate collection created by a->including(b) and modify it to create the
final result. This is safe since the intermediate result cannot be accessed in any
other way than by the subsequent ->including(c). If there are no other accesses
to a, it is permissible to modify a twice and avoid all intermediates.

3.2 Eagerness

While the specification may imply that evaluations should be performed eagerly,
this is just the way specifications are written to ease understanding. An imple-
mentation is permitted to do something different so long as the difference is
not observable. Lazy evaluation is a tactic that has been used with many lan-
guages. OCL has a strong functional discipline and so laziness has much to offer
in an OCL evaluator. Unfortunately OCL development teams have been slow to
exploit this tactic.

3.3 Invalidity

The OCL specification is far from perfect. In OCL 2.0, there were the three over-
lapping concepts of null, undefined and invalid. OCL 2.2 clarified the concepts
by eliminating undefined and so distinguished null and invalid, but invalid is
still inadequate to represent real execution phenomenon.

There is currently no distinction between program failures such as



– divide by zero
– Sequence/OrderedSet index out of range
– null navigation

and machine failures such as

– stack overflow
– network failure

Since machine failures are not mentioned by the specification, it would seem
that they must be invalid, but only very specialized applications such as the
OCL specification of a debugger can be expected to handle machine failures.
Consequently the treatment of machine failures as invalid for the purposes
of 4-valued (true,false,null,invalid) strict logic evaluation seems misguided.
Rather a further fifth failure value for machine failure should be non-strict
so that machine failures are not catchable by logic guards. The fourth strict
invalid value should apply only to program failures.

Program failures are amenable to program analysis that can prove that no
program failure will occur. When analysis is insufficiently powerful, the pro-
grammer can add a redundant guard to handle e.g. an ‘impossible’ divide-by-
zero. With 5-valued logic we can prove that the partial result of a collection
evaluation will remain valid if fully evaluated and so avoid the redundant full
calculation when the partial calculation is sufficient.

Proving that null navigations do not occur is harder but an analysis of null
safety is necessary anyway to avoid run-time surprises [5].

Once machine failures are irrelevant and the absence of program failures
has been proved, a partial collection result may be sufficient; the redundant
evaluations can be omitted.

3.4 Determinism

Determinism is a very desirable characteristic of any program evaluation, par-
ticularly a specification program. Is OCL really non-deterministic?

Collection::asSequence() is defined as returning elements in a collection
kind-specific order.

The Set::asSequence() override refines the order to unknown, which is not
the same as indeterminate.

The Collection::any() iteration specifies an indeterminate choice between
alternatives.

The foregoing appears in the normative part of the specification. Only the
non-normative annex mentions a lack of determinism for order discovery.

It is therefore unclear from the specification text whether an OCL implemen-
tation of order discovery may be non-deterministic. A clarified OCL specification
could reasonably take either alternative. If order discovery is deterministic, it is
easy for Collection::any()’s choice to be consistent with that discovery.

In practice, typical OCL implementations use a Java Set to realize OCL
Set functionality. The iteration order over a Java Set depends on hash codes,



which depend on memory addresses, which depend on the unpredictable tim-
ing of garbage collection activities. It is therefore not possible for typical OCL
implementations to be deterministic.

It would appear that implementation pragmatics are driving the specification
or at least the user perception of the specification. But indeterminacy is so bad
that it would be good to find a way to make OCL deterministic.

3.5 Four Collection types

The four permutations of unique and ordered provide four collection behav-
iors and four specification types, but do we really need four implementation
types? With four types we may have the wrong one and so we need conversions.
UML [10] has no collection types at all. What if an implementation realized all
four behaviors with just one implementation type? One benefit is obvious; no
redundant conversions.

4 New Collection Solution

Our new solution has only one Collection implementation type that exhibits all
four Collection behaviors, but only one at a time. To avoid confusion between
our new Collection implementation and the OCL abstract Collection or the
Java Collection classes, we will use NewCollection in this paper1.

4.1 Deterministic Collection Representation

A NewCollection<T> instance uses two Java collection instances internally.

– ArrayList<T> of ordered elements.
– HashMap<T,Integer> of unique elements and their repeat counts.

For a Sequence, the ArrayList serializes the required elements; the HashMap
is unused and may be null.

For a Set, the keys of the HashMap provide the unique elements each mapped
to a unit Integer repeat count; the ArrayList serializes the unique elements in
a deterministic order.

For an OrderedSet, the keys of the HashMap provide the unique elements each
mapped to a unit Integer repeat count; the ArrayList serializes the unique
elements in the required order.

For a Bag, the keys of the HashMap provide the unique elements each mapped
to a repeat count of that element; the ArrayList serializes the unique elements
in a deterministic order.

The Java implementation of a HashSet uses a HashMap and so using a
HashMap for Set and OrderedSet incurs no additional costs. On a 64 bit ma-
chine, each HashMap element incurs a 44 byte cost per Node and typically two 8

1 The Eclipse OCL class name is currently LazyCollectionValueImpl



byte costs for pointers. Using an ArrayList as well as a HashMap increases the
cost per entry from 60 to 68 bytes; a 13% overhead for non-Sequences.

Use of an ArrayList to sequence the unique elements allows an efficient
deterministic iterator to be provided for all kinds of Collection.

Since a Set now has a deterministic order, there is no implementation differ-
ence between a Set and an OrderedSet.

The deterministic order maintained by the ArrayList is based on insertion
order. New elements are therefore added at the end or not at all, which avoids
significant costs for ArrayList maintenance.

For a Bag, there is a choice as to whether an element iteration is over
all elements, repeating repeated elements, or just the unique elements. The
NewCollection therefore provides a regular iterator() over each element, and
an alternative API that skips repeats but allows the repeat count to be ac-
cessed by the iterator. Bag-aware implementations of Collection operations can
therefore offer a useful speed-up.

The NewCollection supports all Collection behaviors, but only one at a
time. Non-destructive conversion between behaviors can be performed as no-
operations. A Set converts to a Sequence by continuing to use the ArrayList

and ignoring the HashMap. However the conversion from a Sequence to a Bag or
Set requires the HashMap to be created and non-unique content of the ArrayList
to be pruned; a new NewCollection is therefore created to avoid modifying the
original NewCollection.

The NewCollection does not inherit inappropriate Java behavior. The prob-
lems with inconsistent OCL/Java equality semantics can therefore be resolved
as NewCollection delegates to the internal HashMap.

4.2 Performance Graphs

The performances reported in the following figures use log-log axes to demon-
strate the relative linear/quadratic execution time behaviors over a 6 decade
range of collection sizes. The measurements come from manually coded test
harnesses that instrument calls to the specific support routines of interest. Con-
siderable care is taken to ensure that the 64 bit default Oracle Java 8 VM has
warmed up and is garbage free. Curves are ‘plotted’ backwards i.e. largest collec-
tion size first to further reduce warm up distortions. Each plotted point comes
from a single measurement without any averaging. Consequently the occasional
‘rogue’ point is probably due to an unwanted concurrent activity and demon-
strates the probable accuracy of surrounding points even at the sub-millisecond
level. Genuine deviations from smooth monotonic behavior may arise from for-
tuitous uses of L1 and L2 caches. Garbage collection may lead to inconsistent
results for huge collection sizes.

4.3 Deterministic Collection Cost

Fig 1 shows the time to create a Set from a Sequence of distinct integers,
contrasting the ‘old’ Eclipse OCL Set with the ‘new’ NewCollection Set. Overall



the ‘new’ design is about 2 times slower corresponding to the use of two rather
than one underlying Java collection.

Fig. 1. ‘Set’ Creation Performance

A corresponding contrast of iteration speed is shown in Fig 2. The ‘new’
design is now about three times faster since the iteration just traverses adjacent
entries in the deterministic ArrayList rather than the sparse tree hierarchy of
non-deterministic HashMap nodes.

Fig. 2. ‘Set’ Iteration Performance

Iteration is faster than creation and so it depends how often the Set is used
as to whether ‘new’ or ‘old’ is faster overall. More than three uses and the
‘new’ design is faster as well as deterministic. Even when used only once the
speed penalty is less than a factor of two. Determinism is therefore practical and
incurs acceptable size and speed costs.



4.4 Lazy Usage

The ‘eager’ exposition of NewCollection’s ArrayList solves the problem of
indeterminacy. The lazy use of a HashMap as well as the ArrayList supports
conversions and non-Sequence collections.

The NewCollection may also be be used for lazy evaluation by providing
careful support for Java’s Iterator and Iterable interfaces.

When a NewCollection has a single consumer, its Iterator may be used
directly by invoking iterator() to acquire an output iterator that delegates
directly to the input.

When a NewCollection has multiple consumers, it must be used as an
Iterable to provide a distinct Iterator for each consumer. iterable() is
invoked to activate the caching that then uses an internal iterator to iterate over
the input at most once.

Considering: a->including(b)->including(c)
An eager implementation of Collection::including might be implemented

by the IncludingOperation.evaluate method as shown in Fig 3.

Fig. 3. Example Eager Evaluation Data Flow

The stateless IncludingOperation::evaluate() eagerly accesses the a and
b values cached by their Variable objects and creates the intermediate ab. A
second IncludingOperation::evaluate() similarly produces the result abc.
Three collection caches are fully populated for each of a, ab and abc.

The lazy implementation shown in Fig 4 uses an IncludingIterator object
that has a current iteration context. The iterator iterates to produce the re-
quired output, one element at a time by fetching the inputs one element at a
time and interleaving the additional value at the correct position. No computa-
tion is performed until an attempt is made to access the abc result. Since the
result cache is missing, the abc access invokes IncludingIteration::next()

to provide each element of abc that is required. IncludingIterator::next()
provides its result from c or by invoking next() on ab, which in turn acquires
its values from a or b. No input, intermediate or output collection caches are



required; a can read its source one element at a time, ab relays its values one at
a time, and the abc output may be accessed one element at time. This is a major
size improvement, three uncached NewCollections that relay one element at a
time, rather than three fully-cached NewCollections.

Fig. 4. Example Lazy Evaluation Data Flow

If a or c has multiple consumers, as shown in Fig 5, the undesirable repe-
tition of the lazy including computations is avoided by activating caches where
the multi-use occurs. This is slightly awkward to implement since the first con-
sumer must invoke NewCollection.iterable() to activate the cache before
any consumer invokes NewCollection.iterator() to make use of the collec-
tion content. As part of a general purpose library used by manual programmers
this programming discipline could cause many inefficiencies. However as part
of an OCL tool, an OCL expression is easily analyzed to determine whether a
collection variable is subject to multiple access. If analysis fails, iterable() can
be invoked just in case.

Fig. 5. Example Lazy Cached Evaluation Data Flow



Eager, lazy and cached evaluations share the same structure of operation and
variable interconnections. The correct behavior is determined by analysis of the
OCL expression. For a singly accessed collection, a transparent behavior is con-
figured. For multiple access, a cached behavior is configured in which the source
iteration is lazily cached for multiple use by the multiple accesses. Unfortunately,
collection operations, such as Collection::size(), are unable to return a result
until the source has been fully traversed and so an eager evaluation is sometimes
unavoidable.

4.5 Lazy Cost

In Fig 6 we contrast the performance of eager and lazy OCL evaluation of the
inclusion of two values into a Sequence of Integers.

Fig. 6. Double Including ‘Sequence’ Performance

For more than 1000 elements, the top curve shows the lazy approach scal-
ing proportionately. The next curve shows the aggregate performance of eager
evaluation also scaling proportionately until garbage collection affects results
at 10,000,000 elements. The bottom two curves show the contributions to the
aggregate from the eager evaluation, and the final result traversal.

For small Sequences with fewer than 1000 elements, the higher constant
costs of the eager approach dominate and the lazy approach is perhaps five
times faster.

For larger Sequences, the lazy approach is about two times slower since an
outer element loop traverses iterations for each partial computation whereas the
eager approach has tighter inner loops for each partial computation.

For the largest 10,000,000 element result, garbage collection has started to
affect the eager evaluation with its three full size collection values for input,
intermediate and output. In contrast, the lazy approach only uses a few hundred
bytes regardless of model size and so is much less affected by huge models.



The lazy approach is clearly superior with respect to memory consumption,
and also faster for up to about 1000 elements. For larger sequences, lazy evalua-
tion may be two times slower. Since lazy evaluation offers the opportunity to skip
redundant computations, we may conclude that in the absence of application-
specific profiling measurements, lazy evaluation should be used.

4.6 Mutable Collections

As suggested above, lazy evaluation is not always better. The simple example
in Fig 4 replaced three fully-cached by three uncached NewCollections but also
introduced two intervening IncludingIterator objects. Invocation of next()
to return an output object traverses the lazy sources incurring four nested invo-
cations of next(). For an iteration such as

aCollection->iterate(e; acc : Set(String) |

acc->including(e.name))

the overall iterate of an N -element aCollection evaluates using a chain
of N interleaved NewCollection and IncludingIterator objects. The overall
evaluation incurs a quadratic 2 ∗N ∗N cost in next() calls.

Of course the traditional approach of creating a new Collection for each invo-
cation of including also incurs a quadratic cost through creating and copying
N collections of approximately N -element size.

In order to achieve a more reasonable cost we can use a non-OCL mutable
operation behind the scenes:

aCollection->iterate(e; acc : Set(String) |

acc->mutableIncluding(e.name))

This exploits the invisibility of the intermediate values of acc. The evaluation
should therefore analyze the OCL expression to detect that the single use of acc
allows the immutable including() operation to be evaluated safely and more
efficiently using the internal mutableIncluding() operation.

In Fig 7 we contrast the performance of the accumulation that computes
S->iterate(i; acc : C(Integer) = C{} | acc->including(i))

using Set or Sequence as the C collection type and C{1..N} as the S source
value for an N collection size.

The new approach uses mutable evaluation to re-use acc and so avoid churn-
ing. The old approach uses the one new Set churn per Set::including execution
as currently practiced by Eclipse OCL [7] and USE [12] (Dresden OCL [6] cre-
ates two Sets). The new approach scales linearly and so is clearly superior to
the traditional quadratic cost. The new approach has a two-fold cost for using
Sets rather than Sequences; much less than when churning occurs.

Note that this optimization relies on a ‘compile-time’ OCL expression anal-
ysis that replaces including by mutableIncluding.



Fig. 7. ‘Sequence’ and ‘Set’ Accumulation Performance

4.7 Lazy limitations

Some operations such as aCollection->size() cannot be executed lazily since
the size cannot be known without the whole collection. But in a suitable context
such as aCollection->size() > 3, it is obvious that the full collection is not
necessary after all. Even for aCollection->size(), aCollection does not need
to be fully evaluated since we are only interested in the number of elements. If
the computation of aCollection can be aware that only its size is required, a
more efficient existence rather than value of each element might be computed.

4.8 Operation caches

As well as using ‘lazy’ evaluation to defer computation in the hope that it may
prove redundant, performance may be improved by caching what has already
been computed in the hope that it can be re-used.

As a side-effect free language, OCL is very well suited to caching the results
of iteration or operation calls. However for simple arithmetic, short strings and
small collections, the cost of caching and re-use may easily exceed the cost of
re-computation. For larger collections, the cache size may be unattractive and
the probability of re-use too low. Such dubious benefits perhaps explain the
reticence of implementations to provide result caching.

Model to model transformations depend on re-use of created output elements
and so the Eclipse QVTd tooling [8] pragmatically provides caches for Functions
and Mappings but not Operations or Iterations.

Empirical observation suggests that for object operations and derived prop-
erties, the re-use benefits and statistics are much more favorable and so such
caching should be part of an OCL evaluator. We will shortly see another exam-
ple where operation caching can be helpful.

4.9 Smart select

The select iteration applies a Boolean predicate to filter a source collection.



sourceCollection->select(booleanPredicate)

In practice there are two common idioms associated with select.

Conformance selection: It is very common to use

S->select(oclIsKindOf(MyType)).oclAsType(MyType)

This selects those elements of S that conform to MyType. This clumsy test
and cast idiom was recognized in OCL 2.4 and a selectByKind() operation
added to improve readability.

In practice each source collection is partitioned into a very small number of
types that can be identified by compile-time analysis of the OCL expressions. A
naive implementation may recategorize the type of each element in each invoca-
tion. A more efficient implementation should re-use the type categorization to
partition into all types of interest on the first invocation and cache the partitions
for re-use by subsequent invocations for any of the types of interest. This should
of course only be performed after Common Sub Expression or Loop Hoisting has
eliminated redundant invocations, and only if there is more than one residual
invocation.

Content selection: It is also common to use

S->select(element | element.name = wantedName)

This locates a matching content of S by choosing the appropriately named
elements. This idiom treats the S as a Map with a name key, but whereas a Map

returns the value in constant time, naive implementation of select incurs linear
search cost.

For a single matching lookup, building the Map incurs a linear cost and so
there is no benefit in an optimization. However in a larger application it is likely
that the name lookup may occur a few times for the same name and many
times for different names. Providing an underlying Map may be very beneficial,
converting a quadratic performance to linear.

We will contrast the performance, with and without a Map, of the accumula-
tion that computes

let S = Sequence{1..N} in

let t = S->collect(i|Tuple{x=i}) in

S->collect(i | t->select(x = i))

The first two let lines build the table all of whose entries are looked up by
the final line.

The top line of Fig 8 shows the traditional naive full search for each lookup.
The lower lines show the time to build the cache, the time to perform all lookups
and their sum. The Map is clearly helpful for anything more than one lookup. As
expected, it scales linearly rather than quadratically.



Fig. 8. ‘select’ Performance

5 Context and Status

The OCL tooling must perform OCL expression analyses to use the foregoing
NewCollection capabilities effectively

– Identify mutable collections - use alternative mutable operation
– Identify single/multiple use collections - configure shared laziness
– Identify content selects - configure lookup tables

However since OCL by itself is useless, OCL tooling cannot know whether or
how to optimize. It is only when OCL is embedded in a larger application that
provides the models and the related OCL expressions that OCL becomes useful.

For the simplest OCL application in which an interactive OCL expression is
evaluated with respect to a model, the costs of the model and expression analyses
may easily outweigh the benefits. No optimization may well give the snappiest
interactive response.

For a more complex OCL application such as the OCL definition of model
constraints, operations and properties supported by OCLinEcore, Eclipse OCL
provides a code generator [3] that embeds the Java for the OCL within the Java
for the Ecore model.

The code generator performs a variety of compile-time analyses and synthe-
ses:

– Common SubExpression / Loop hoisting
– Constant Folding
– Inlining
– Dispatch tables

The code generator also prepares tables and structures that cannot be fully
analyzed until the actual run-time models are available:



– Run-Time Type Information (e.g. oclIsKindOf support)

– Run-Time Navigability Information (unnavigable opposites)

– Run-Time Instances Information (allInstances)

Adding a few additional activities is structurally easy, and only a minor compile-
time degradation. The results presented earlier use a manual emulation of what
the automated analysis and synthesis should achieve 2.

For OCL-based applications such as QVTc or QVTr [9], the Eclipse OCL
code generator has been extended and appears to provide a twenty-fold speed-
up compared to less optimized interpreted execution [4]. A smaller speed-up is to
be expected for intensive Collection computations where most of the execution
occurs in shared run-time support such as Set::intersection().

6 Related Work

Lack of determinism in Model-to-Model transformation tools has been a regular
irritation. e.g. https://bugs.eclipse.org/bugs/show bug.cgi?id=358814.

Gogolla et al [1] identify the lack of determinism for OCL collection conver-
sions and suggested that certain combinations should be deterministic so that
the following is true:

SET->asBag()->asSequence() = SET->asSequence()

In this paper we make OCL collections fully deterministic and so all the sug-
gested combinations are deterministic. The only open question is whether the
deterministic order is unknown. If known, two different OCL implementations
should yield the same deterministic result.

Lazy OCL evaluation is used by Tisi et al [2] to support infinite collections.
The authors consider their work as a variant semantics for OCL. Our alternative
reading of the OCL specification allows infinite collections to be supported by
regular OCL tooling provided eager operations such as Collection::size()

are avoided. The default Bag-aware iteration provided by the NewCollection is
incompatible with lazy Bags, however an alternative but less efficient approach
could remedy this limitation.

Discomfort with the prevailing state of the art highlighted by these papers
inspired the solution provided in this paper. The unified Collection implemen-
tation type is new. The deterministic Collection type is new. ‘Lazy’ OCL is not
new, but the OCL expression analysis to exploit the lazy unified Collection type
is new.

2 Unifying the four concrete eager Collection types by a single lazy replacement is an
API breakage that requires Eclipse OCL to make a major version number change.
The code for lazy evaluations is therefore only available on the ewillink/509670
branch in the Eclipse OCL GIT repository



7 Conclusions

We have introduced a new underlying representation for a Collection implemen-
tation that unifies all four types and eliminates redundant conversion costs.

The new representation is deterministic allowing OCL and OCL-based model-
to-model transformation tools to be deterministic too.

We have distinguished between program and machine failures so that the
new representation can provide effective lazy evaluation capabilities.

We have used lazy evaluation to significantly reduce memory costs and to
avoid redundant computations by allowing favorable algorithms to terminate
prematurely.

We have linearized some quadratic costs by using mutable collections and a
content cache for select().
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