OCL WORKSHOP 2016

A Comparison of Textual Modeling Languages:

OCL, Alloy, FOML

& Mira Balaban?, Phillipa Bennett?, Khanh Hoang Doan3, Geri
Georg?, Martin Gogolla3, Igal Khitron!, Michael Kifer4

1. Computer Science Department, Ben-Gurion University of the Negev
2. Computer Science Department, Colorado State University

3. Department for Mathematics and Computer Science, University of
Bremen

4. Department of Computer Science, Stony Brook University

E: Introduction

*» Textual languages are used in model-driven
engineering for wide range of purposes.

*» OCL, Alloy, and FOML are three popular textual
languages.

*»» Our objectives?

= Showing a comparison between three languages on
major modeling criteria.

= Discussing the similarities and differences among the
languages.

= Helping one in choosing a suitable textual language for
modeling.

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 3

Criteria for comparison

**» Mode of usage and problems being solved
= Constraining a model.
= Querying and analysis.
= Checking satisfiability of constraints.
= Multiple levels of modeling.
** Representation aspects
= Navigation through the elements of the models.
= Supporting for collections.
= Recursion.
= Subtyping/instantiation.

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 4

E: Modeling with OCL

“ Navigation

= Using role names from associations or object-valued

attributes =] ciass diagram o &' [

context p: Person

Parenthood

+ child

Person

p.parent

+» Collections

fName : String
IName : String
yearB : Integer

0.2 parent

= Support four collection kinds: sets, bags, sec
ordered sets.

uences and

= Number of collection operations: iISEmpty, size, select,

collect, union, intersection, . . .

** Recursion: use transitive closure functionality

p.parent ->closure(parent)
A Comparison of Textual Modeling Languages: OCL, Alloy, FOML

E: Modeling with OCL (con)

*» Formulating constraint with OCL
= Formulate at class level
= |ts semantics is applied on the level of objects.

= Three types of constraints: invariant, postcondition and
precondition.

context p:Person inv acyclicParenthood:
p.parent->closure(parent)->excludes(p)

“»» Checking satisfiability of constraints

u TOOI Su pport (e . g .y tOOI U S E) Class invariants oo ﬂz ﬂ‘ E
Person:.acyclicParenthood] | [¥l [] true
Person::namellnique] [v] [] true

ints ok. (Oms)

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 6

(¥ ocLvsAloy

“» Similarities
= The center of both languages is set and collection.
= Using transitive closure functionality for recursion.

= Formulating constraint quite similar = not much effort for
translate constraints between.

+» Differences

= Alloy navigates through relation names, OCL navigates
through association end names.

= OCL supports n-ary associations and navigation through
them, which cannot be done in Alloy.

= One can define and use predicate in Alloy, which is not
directly support in OCL.

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 7

(X ocLvsFom

“» Similarities
= Most of the language features of FOML are
supported in OCL.
= Navigate through association-end names (role names).
= Support composite associations (n-ary associations)

= Support closure functionality.

+» Differences

= Main difference between the two modeling languages is
the multilevel modeling support.

= FOML supports three-layer specification: data, model,
and meta-model. Current OCL version only supports two
level

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 8

E: Modeling with Alloy

Modeling with Alloy

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 9

Alloy and the Alloy Analyzer

» Alloy is a Declarative Modeling Language.

» Alloy is supported by the Alloy Analyzer.

» Classified as a Model Finder that searches for valid instances and
counterexamples within a specified scope.

» Uses signatures, relations, facts, and predicates for model specifications.
» Uses predicates and assertions to query a model.

» Navigation occurs via relations, using the dot operator (which also serves
as a relational join operator).

The RolePermissionEmployee Alloy Model

roleHierarchy supervisors

*

Permission rolePermissions Role . Employee - Permanent [Typeq— Tomporary
1.7 1.7 1..* employeeRoles *|type : Type
O": roleName
Name
module RolePermissionEmployee /* supervisors relation is a tree */
open util/graph[Role] as g_r tree[supervisors]
sig Employee, Name, Permission {} /* a supervisor also has the roles of
sig Role {roleName: Name } those supervised through an ancestor
role in the Role Hierarchy */

sig Sys { all

roles: set Role, el, e2: employees |

roleNames: set Name, some el->e2 & “supervisors implies

perms: set Permission, el.employeeRoles->e2.employeeRoles in

roleHierarchy: roles -> roles, “roleHierarchy }

rolePermissions: roles some —-> some perms
H assert noLoopsInSupervisors {

/* constrain the set of role names */ all

roleNames = roles.roleName sys: Sys |

no iden & ~(sys.supervisors) }
/* role names are unique */ check noLoopsInSupervisors for 7expect 0
all n: roleNames | lte[#roleName.n, 1] [:

Alloy Instance

pred show (sys: Sys) {

let

n

$allRelations
employeeRoles: 2
roleHierarchy: 2
roleName: 4
rolePerms: 4
SUpervisors:

Employee0
(employees)

-

$allRelations: 15
employeeRoles: 2
raleHierarchy: 2
roleName: 4
rolePerms: 4
supenvisors: 1
type: 2

=1|

Role2 Roled Employeet
(roles) (roles) (employees)
roleName I
r‘
Name3 Permission1 Name0 Temporary Role1 Role3
(roleMames) (perms) (roleMNames) (types) (roles) (roles)
¥ y\
Name1 Permission0 Name2
(roleNames) (perms) (roleNames)

gt [#sys.employees, n] and

n] }

gt [#roots[sys.roleHierarchy],

run show for 4but 1Sys expect 1

Role0 and Role2 are the roots of roleHierarchy

Employee0 supervises Employeel

Employee0 gains the role of Employeel

through the roleHierarchy.

No cycles in roleHierarchy or supervisors;~—
S

Complete model online, see reference in paper-//"/
4/4

A

N

B,

E: Modeling with FOML

Modeling with FOML

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 13

FOML — Feature Summary

* Expressive rule logic language
— Extensional (data-based) & intensional (inference-based)
— Executable

— Extendable

* Services:
— Modeling: Textual model specification
— Constraints (model extension)
— Ad-hoc (on the fly) querying & inference
— Validation, testing
— Metamodeling, model analysis

— Multilevel modeling

14 October 2016

Modeling — Industry Motivation

child |0-*
owner ownerR owned
User 1 0.* Table tableDependency
Id = Int d in:Stri
namf:= String grantee_table granted cmain-=tring parent
authorisedP(t: Table):Boolean 0.” user_tableR 0. 0.”
table_grantees(t:Table):List(User) table | 1
authorized_tables(domain:String):List(Table)
table_permsR
grantor |1 grantee 0.
table_perms | Y-
ranteeR rantee_perms
g 9 il Permission
grantorR 0." access():{read,write}
0.”
grantor_perms

15

October 2016

16

child |0

owner ownerR owned
User 1 0.r Table tableDependency
:’a},g\i String grantee_table granted domain:String parent
authorisedP(t:Table):Boolean 0.” user_tableR 0.” 0.*
table_grantees(t:Table):List(User) table |41
authorized_tables(domain:String):List(Table)
table_permsR

grantor |1 grantee |1 table_perms 0.*
ranteeR rantee_perms
g g P Permission
grantorR 0.0 access():{read,write}
0.”
grantor_perms

Metamodeling:
 User:Class;
* grantorR.prop(grantor,1,1)[User];

Data: mary.granted[tl].table_perms[pl].grantee[mary];
Query (on the fly):

Find grantor-grantee-permission triplets (?u, ?v, ?p) to tables whose
domain is “teaching”:

?- 2u:User, 2u.grantor_perms[?p].grantee[?v], ?p.table.domain["teaching"];

October 2016

Id = Int
name = String

authorisedP(t:Table):Boolean
table_grantees(t:Table):List(User)
authorized_tables(domain:String):List(Table)

grantor |1

Intensional:

— mary.compose(granted, table_perms, grantee)[mary];

— compose(granted, table_perms, grantee).circular[true];

— ?p.circularftrue] :- ?o0.closure(?p)[?0];

child |0
owner ownerR owned
User 1 0.x Table tableDependency
grantee_table granted domain:String
parent
0. user_tableR 0.r 0."
table |1
table_permsR
grantee |1 table_perms 0."
teeR t
grantee grantee_perms Permission
grantorR 0." access():{read,write}
o0r
grantor_perms
- Intensional (defined) property

An inference rule

-

— - ?p.circular[true], not ?o. closure(?p)[?0];

«— A constraint definition of circular

— For a table ?t, the composition of grantor_perms and grantee is not circular

?u.grantor_grantee(?t)[?v] :- 2u.compose_via_obj(grantor_perms, ?p, grantee)[?v], ?p.table[?t];

I- ?t:Table, grantor_grantee(?t).circular[true];

Intensional parameterized

property
17

October 2016

child |0-*
owner ownerR owned
User 1 0 Table tableDependency

Inda:ngt String grantee_table granted domain:String parent
authorisedP(t:Table):Boolean 0.” user_tableR 0.” 0.”
table_grantees(t:Table):List(User) table | 1
authorized_tables(domain:String):List(Table)

table_permsR

grantor |1 grantee (1 table_perms 0.*
ranteeR rantee_perms
g g P Permission
grantorR 0.7 access():{read,write}
o

grantor_perms

e Association class constraint on prermission, user_tableR, grantee, table:

* Auser ?u that is a grantee in a permission to a table ?t, is granted access to ?t

2u.granted[?t] :- u.grantee_perms.table[?t]; rule (9) in paper

* Every pair of a granted user ?u to a table ?t has a corresponding permission:

I- 2u.granted[?t], not ?u.grantee_perms.table[?t]; constraint (13) in paper

* For every grantee user ?u to a table, there is a single corresponding permission:

constraint (14) _ 2y grantee_perms([?p1].table[?u.grantee_perms[?p2].table], ?p1!=?p2;

* Challenge:
Express the association class constraint in the other languages!

18 October 2016

Comparison Summary

*» Representation

Navigation Subtyping | Instance
creation &
completion

Individual & Collection; Yes Yes
intermediate filtering; Transitive
follows closure

associations and
derived associations

Individual; follows Transitive Yes Yes
associations and closure

virtual relations

Individual; User- Yes No
intermediate filtering; defined

follows associations recursion

and virtual relations; (includes

wildcard navigation transitive

closure)

Comparison Summary

“» Usage

Textual Querying Validation | Multilevel
modelmg Modelmg

Via tools

AIon Yes Yes No Yes No
2015 Yes Yes Yes via Yes
constraints

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 21

(S Conclusion

** We present a comparison between modeling
languages on the basis of their mode of usage and
representation aspects.

*» The similarities, differences, strengths and
weaknesses are showed.

*» The representation aspects of the languages have a lot
of similarities.

**» The mode of use of Alloy and OCL is closely related,
whereas FOML is quite different (e.g. multi level
modeling)

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 22

Thanks for your
attention!

A Comparison of Textual Modeling Languages: OCL, Alloy, FOML 23

