
OCL @ MODELS 2016

Encapsulation, Operator Overloading,

and Error Class Mechanisms in OCL

Vincent Bertram, Bernhard Rumpe,

Michael von Wenckstern

Software Engineering

RWTH Aachen

http://www.se-rwth.de/

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 2

Outline

Encapsulation, Operator Overloading, Error Classes2.

Example Workflow3.

Conclusion4.

Motivation1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 3

Motivation - General

 Due to the highly competitive automotive market, manufacturers

update their vehicles continuously with new features.

 A special single feature does not necessary affect every software

part, therefore individual components are updated to successively

replace old component versions with new ones.

 A feature change can cause incompatibilities, the automotive

industry is constantly stating the structural (and/or behavioral)

backward compatibility.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 4

Motivation – Static software verification

 Static software verification is a software engineering discipline,

analyzing software against a given specification without running any

line of code by using formal methods.

 Checking models for correctness or compatibility using standard

formal modeling techniques (such as OCL) has merits in abstraction

and compactness.

 It is inconvenient for developers, since there are no standard

mechanisms how to handle large and complex OCL constraints.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 5

Motivation - Questions

 The contribution is to answer the following questions:

(1) How to logically group OCL constraints?

(2) How to split up complex constraints easily into multiple smaller

ones?

(3) How to use OCL operators for self-defined model structures?

(4) How to produce meaningful error messages to the user?

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 6

Outline

Encapsulation, Operator Overloading, Error Classes2.

Example Workflow3.

Conclusion4.

Motivation1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 7

 Interface compatibility (A is interface compatible to B iff)

• Component A has at least (it may have more) the same input and

output port names as Component B

• A’s input ports accept the same or more input values than B’s

input ports

• A’s output ports produce the same or fewer output values than

B’s output ports

 It is not complicated to define interface compatibility, but still, you

can face a lot of small constraints:

• (1) primitive data type compatibility (e.g. when are enumerations

compatible)

• (2) unit compatibility such as km/h and m/s

• (3) range compatibility considering several ranges each of which

may have different min, max, accuracy or resolution

Interface compatibility

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 8

Derived MetaModel

Bertram, V., Manhart, P., Plotnikov, D., Rumpe, B., Schulze, C., von Wenckstern, M.: Infrastructure to Use OCL for Runtime Structural Compatibility Checks of Simulink Models. In: Modellierung (2016)

dest

CD …

FunctionComponent

«interface»

FunctionComponentElement

PortConnector

1
contains

Interface

String: name

implements

«abstract»

Port

source

String: name

Boolean: in

1

1
String: name

1..*

res

min

max

1

1

1

acc

«
in

s
ta

n
c
e

O
f»

Number

Primitive

Type

Range Value

0..1

PrimitiveType

Reference

«interface»

Unit

type

ranges

QuantityKind

String: name

1

1

1

0..1

accuracy

resolution

is implemented by
concrete SI units
(kg, m, s)

(class diagram is an excerpt)

*

1
1..*

* *

*

* *
*

*

*

*

0..1

*

acceleration,
energy or speed

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 9

ADAS Object Diagram instantiation

ADAS_V1: FunctionComponent

v_LimiterSetValue:

SignalPort

in = true

:PrimitiveType

Reference

KilometerPerHour:

DerivedUnit

:Range

min = 0

max = 250

:Resolution

value = 0.05

Acceleration_pedal_pc:

SignalPort

in = true

:Accuracy

value= 3.5

res

ADAS_V4: FunctionComponent

v_LimiterSetValue:

SignalPort

in = true

:PrimitiveType

Reference

None:

DerivedUnit

:Range

min = 0

max = 250

:Resolution

value = 0.05

Acceleration_pedal_pc:

SignalPort

in = true

:Accuracy

value= 3.0

res

OD …OD …

Interface backward compatibility between two Component & Connector

(C&C) models. Given if ADAS_V4 can replace ADAS_V1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 10

General interface compatibility constraint

InterfaceCompatibility

CD

«query» + Boolean v2BackwardsCompatibleToV1()

FunctionComponent

String: name

v1 v2

1context InterfaceCompatibility ic inv:

2 ic.v2BackwardsCompatibleToV1()

3 <=> …

OCL/P…

1context InterfaceCompatibility inv:

2 self.v2BackwardsCompatibleToV1()

3 = …

OCL 2.4 …

The constraint has a context and

describes an invariant, meaning the

constraint must be satisfied for all

InterfaceCompatiblity class instances.

the equals operator in OCL 2.4
is similar to OCL/P’s <=>.

(ADAS_V1)

describes a property that must hold in a
system at each point of time

the context in which a constraint is embedded into;
e.g. names of classes, attributes and/or properties in
class diagrams

a boolean statement about a system

(ADAS_V4)

calls for every InterfaceCompatiblity object the query method
v2BackwardsCompatibleToV1().

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 11

Definition of Library Expressions

 Defining an OCL library with expressions in a function-like way

 The definition expression defines new attributes and query

operations to existing models, which can be used in other

constraints. Define a new query method:
IsBackwardsCompatibleTo(FunctionComponent v1) to the

CD model FunctionComponent and makes the modeling of an extra
class like InterfaceCompatibility in the CD redundant.

 This function depends on other compatibility constraints such as

data type, range, unit compatibility. This would result in polluting CD

with unnecessary, and probably not reusable, query functions just to

make one definition good readable.

• We present a method for how to define an OCL library

comfortably with public (can be called from outside the library)

and private (can only be used inside this library) functions

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 12

Library definition in OCL/P and OCL

1library InterfaceCompatiblity is:

2 + def boolean v2BackwardsCompatibleToV1

3 (FunctionComponent v1, FunctionComponent v2) is:

4 result =

5 (forall Port ports1 in v1.implements.ports,

6 Port ports2 in v2.implements.ports:

7 dataTypeCompatible(ports1, ports2))

8 && …

9 - def boolean dataTypeCompatible(Port p1, Port p2) is:

10 result = …

public

OCL/P…

private

11package InterfaceCompatiblity

12 context FunctionComponent

13 def: v2BackwardsCompatibleToV1(v2: FunctionComponent)

14 :Boolean =

15 self.implements.ports->forAll(ports1: Port |

16 v2.implements.ports->forall(ports2: Port |

17 dataTypeCompatible(ports1, ports2))

18 && …

19 context Port

20 def: dataTypeCompatible(p2: Port) :Boolean = …

21endpackage

OCL 2.4 …

Example for an OCL library with public and private query functions

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 13

Define new functions and operators

OCL/P

OCL/P

OCL 2.4

semantically equivalent

1context FunctionComponent v1:

2 def boolean v2BackwardsCompatibleToV1(FunctionComponent v2) is:

1def boolean v2BackwardsCompatibleToV1

2 (FunctionComponent v1, FunctionComponent v2) is:

there exists no equivalent translation in OCL 2.4
(“Definition constraint must be attached to a Classifier“)

1context FunctionComponent

2 def: v2BackwardsCompatibleToV1(v2: FunctionComponent) :Boolean =

 The top part shows the previous convenience definition.

FunctionComponent extending the class FunctionComponent with an extra

query function v2BackwardsCompatibleToV1().

 Similar to C ++ ’s mechanism that define new functions and operators as

member and non-member, new operations can also be defined without an

explicit given context.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 15

Overload infix / prefix operators using OCL/P

1def boolean infix (Unit u1) ~ (Unit u2) is:

2 result = u1.quantityKind == u2.quantityKind

3def boolean infix (Number v) in (Range r) is:

4 result =

5 v >= r.min &&

6 v <= r.max &&

7 (~r.res || (v - r.min) % r.res == 0)

8def boolean infix (Number v) in (List<Range> ranges) is:

9 result = exists Range r in ranges: v in r

10def boolean typeReferenceCompatible(PrimitiveTypeReference tR1,

11 PrimitiveTypeReference tR2) is:

12 let

13 PrimitiveTypeReference tR1c = tR1.convert(tR2.unit)

14 in

15 result =

16 tR1.unit ~ tR2.unit &&

17 forall Number v in tR1c.ranges:

18 v in tR2.ranges &&

19 …

(converts e.g. tR1 from eg. 1 m in 100 cm)

(Range r has no optional association res to Resolution)

OCL/P…

20def boolean prefix ~ (Association a) is:

21 result = a.size > 0

syntax of overloading a prefix operator

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 16

Overload operators using OCL

1context Unit

2 def: _’=’(u2: Unit) :Boolean = self.quantityKind == u2.quantityKind

3context Number

4 def: isInRange(r: Range) :Boolean =

5 self >= r.min &&

6 self <= r.max &&

7 (r.res->notEmpty() || (self - r.min) % r.res == 0)

8 def: isInOneRange(ranges: Sequence(Range)) :Boolean =

9 ranges->exists(r: Range | self.isInRange(r))

10context PrimitiveTypeReference

11 def: typeReferenceCompatible(tR2: PrimitiveTypeReference) :Boolean =

12 let

13 tR1c: PrimitiveTypeReference = tR1.convert(tR2.unit)

14 in

16 tR1.unit = tR2.unit &&

17 Number.allInstances()->forall(v: Number |

18 v.isInOneRange(tR1c.ranges) implies

19 v.isInOneRange(tR2.ranges) &&

20 …

OCL 2.4 …

changed from ‘~’ to ‘=’, because OCL 2.4 can only overlaod:
‘+’, ‘-’, ‘*’, ‘/’, ‘=’, ‘<>’, ‘<’, ‘>’, ‘<=’, ‘>=’

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 17

OCL Error Classes for Intuitive Feedback

 A mechanism how to generate user-friendly error messages if OCL

constraints fail. These error messages can be domain-specific and

hence can give users all the information needed to trace down

existing errors.

 One drawback of a OCL definition is its restriction to a Boolean

result for the user. The answer satisfied (ADAS_V4 is compatible to

ADAS_V1) or non-satisfied makes it hard to understand where

exactly the constraints failed in case of a negative answer.

 A definition of error classes overcomes this drawback by providing

easy to understand witness instantiations of an OCL error class.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 18

Example error class instantiation

A valid UnitWitness instantiation

related to the previos OD would have

the attribute values:

portName = "v_LimiterSetValue"

unit1 = "KilometerPerHour“

unit2 = "None"

A witness instance can be used in templates for generating user friendly

text messages. In order to maintain only one kind of artifact, OCL has

been extended by the counterexample keyword as demonstrated:

counterexample String portName, Unit unit1, Unit unit2 inv UnitWitness:

«query»

UnitWitness

- readonly String portName

- readonly Unit unit1

- readonly Unit unit2

CD

+ String getPortName()

+ Unit getUnit1()

+ Unit getUnit2()

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 19

Defining error classes producing counterexamples

1context UnitWitness uw inv:

2 let

3 SignalPort p1 = uw.getUnit1().

4 primitiveTypeReference.signalPort;

5 SignalPort p2 = uw.getUnit2().

6 primitiveTypeReference.signalPort;

7 in

8 p1.interface.name != p2.interface.name &&

9 uw.getPortName() == p1.name &&

10 uw.getPortName() == p2.name &&

11 !(uw.getUnit1() ~ uw.getUnit2())

OCL/P…

1counterexample String portName, Unit unit1, Unit unit2 inv UnitWitness:

2 let

3 SignalPort p1 = unit1.primitiveTypeReference.signalPort;

4 SignalPort p2 = unit2.primitiveTypeReference.signalPort;

5 in

6 p1.interface.name != p2.interface.name &&

7 portName == p1.name && portName == p2.name &&

8 !(unit1 ~ unit2)

OCL/P…

OCL/P can navigate against
navigation direction

ports belong to different function
components (different interface names)

ports have the same name

units of the ports are not compatible

«query»

UnitWitness
- readonly String portName

- readonly Unit unit1

- readonly Unit unit2

CD

CD + OCL/P context is replaced by

OCL/P counterexample

+ String getPortName()

+ Unit getUnit1()

+ Unit getUnit2()

semantically equivalent

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 20

OCL Conditions to define Error Classes

B1

B1

CO1

R1

R2

R8

R11

…

All names of model elements within a component namespace have to be unique.

Top-level component type definitions do not have instance names.

Connectors may not pierce through component interfaces.

Each outgoing port of a component type definition is used at most once as target

of a connector.

Each incoming port of a subcomponent is used at most once as target of a

connector.

The target port in a connection has to be compatible to the source port, i.e., the

type of the target port is identical or a supertype of the source port type.

Inheritance cycles of component types are forbidden.

For each formalized ContextCondition also a counterexample class is

given to produce meaningful user feedback.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 21

Outline

Encapsulation, Operator Overloading, Error Classes2.

Example Workflow3.

Conclusion4.

Motivation1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 22

Check structural compatibility

Compatibility

statement

Two white box

Simulink

models

[no structural

compatibility]
Return not

matching

ports

Check

interface

compatibility

AD

➀

➁ ➂

[structural

compatibility]

Workflow: Check structural compatibility

Create

counter

example

ADAS_V1

ADAS_V4

④

➄

④

➄

➀

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 23

classdef(Enumeration) LeverAngle <

Simulink.IntEnumType

enumeration

ZeroDegree(0)

PlusFiveDegree(1)

MinusFiveDegree(2)

end

end

LeverAngle.m

(SPa)

(SPb)

(VP)

(SPc)
(CP)

(TP)

(1)

(2)

(3)

(SPa)

classdef(Enumeration) LeverAngle <

Simulink.IntEnumType

enumeration

ZeroDegree(0)

PlusFiveDegree(1)

PlusSevenDegree(2)

MinusFiveDegree(3)

MinusSevenDegree(4)

end

end

LeverAnglePro.m

ADAS main component

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 24

«enumeration»

LeverAnglePro

ZeroDegree

PlusFiveDegree

PlusSevenDegree

MinusFiveDegree

MinusSevenDegree

«enumeration»

LeverAngle

ZeroDegree

PlusFiveDegree

MinusFiveDegree

CD

CD

SL

Data type compatibility fault of type enumeration

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 25

Simulink: structural incompatibility

Structural compatibility errors found (left) are illustrated as Simulink model (right)

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 26

Outline

Encapsulation, Operator Overloading, Error Classes2.

Example Workflow3.

Conclusion4.

Motivation1.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 27

Conclusion (Concepts)

 The OCL library concept with private and public constraints, supports

to organize the amount of constraints by hiding unnecessary details

for developers.

 Maybe operator overloading would not be necessary, but it made it

easier to read OCL constraints.

 The most important concept is the introduction of error classes, other-

wise it is not possible to use OCL for ContextConditions, since the

user needs to know which C&C element causes a constraint to fail.

 To create even better user feedback, error classes are prioritized.

The error prioritization is done by defining disjunct error classes,

which ensures that solely one error is causing the incompatibility for

exactly one port of the C&C model instead of many different errors

that are implied by the one main error (e.g. unit compatibility is higher

prioritized than range compatibility).

making a unit dimensionless results in changing its value ranges and its accuracies

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 28

Conclusion (Answering the initial questions)

 How to logically group OCL constraints?

Create OCL libraries to structure the code and use their encapsulation

mechanisms with private and public constraint definitions.

 How to split up complex constraints easily into multiple smaller ones?

Create smaller OCL helper constraints by the OCL def operator. It is now very

similar to splitting large Java or C function into smaller ones.

 How to use OCL operators for self-defined model structures?

Thanks to operator overloading, a well-known principle in many languages, self-

defined models, e.g. complex numbers defined as a CD, can be accessed as

intuitive (e.g. + operator) as the OCL basic types such as integer numbers.

 How to produce meaningful user error messages?

A methodology on how to specify and prioritize error classes for users to

generate intuitive user feedback was developed.

Vincent Bertram

Software Engineering

Chair (Bernhard Rumpe)

RWTH Aachen University

Page 29

Finish

Thank you for your attention.

